Expression of the LIM-homeodomain gene Lmx1a (dreher) during development of the mouse nervous system.

Mech Dev

UPR 2197, Développement, Evolution, Plasticité du Système Nerveux, Institut de Neurobiologie Alfred FESSARD, C.N.R.S., Avenue de la Terrasse, 91198 GIF-sur-YVETTE cedex, France.

Published: October 2002

The expression pattern of Lmx1a, a LIM-homeodomain gene disrupted in the dreher mouse neurological mutant, is described during development. Lmx1a is predominantly expressed in the developing nervous system from embryonic day E8.5 to adulthood, in restricted areas. Major expression domains include the dorsal midline (roof plate) of the neural tube, the cortical hem, the otic vesicles, the developing cerebellum and the notochord. The Lmx1a expression pattern is therefore well correlated with the various aspects of the phenotype of the dreher mutant mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0925-4773(02)00254-xDOI Listing

Publication Analysis

Top Keywords

lim-homeodomain gene
8
nervous system
8
expression pattern
8
expression
4
expression lim-homeodomain
4
lmx1a
4
gene lmx1a
4
lmx1a dreher
4
dreher development
4
development mouse
4

Similar Publications

Article Synopsis
  • The study investigates the role of transcription factors Runx3, Brn3a, and Isl1 in the development of sensory proprioceptive neurons, highlighting the serious impact of Runx3 deficiency on neuron survival and motor function.
  • The researchers used RNA sequencing and genomic techniques to analyze the interactions and binding sites of these transcription factors in TrkC neurons.
  • Their findings reveal that Runx3 primarily interacts with Brn3a to regulate target gene expression through enhancers, while it also plays a distinct role in suppressing immune-related genes.
View Article and Find Full Text PDF

LHX3 promotes EMT in hepatoma cell through β-catenin/TCF4 pathway.

Med Oncol

December 2024

Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China.

Hepatocellular carcinoma (HCC) is a highly malignant cancer and lacks effective therapeutic targets. The role of LIM/homeobox protein Lhx3 (LHX3) has been extensively studied in various tumor tissues, where it has been identified as a promoter of tumorigenesis and malignancy. However, the specific functional role and potential mechanism of LHX3 in human HCCs are not clearly clarified.

View Article and Find Full Text PDF

Congenital hydrocephalus (CH), characterized by cerebral ventriculomegaly (CV), is among the most common and least understood pediatric neurosurgical disorders. We have identified in the largest-assembled CV cohort (>2,697 parent-proband trios) an exome-wide significant enrichment of protein-altering de novo variants (DNVs) in LDB1 (p = 1.11 x 10-15).

View Article and Find Full Text PDF

Regulation of neuronal fate specification and connectivity of the thalamic reticular nucleus by the Ascl1-Isl1 transcriptional cascade.

Cell Mol Life Sci

December 2024

Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.

Article Synopsis
  • The thalamic reticular nucleus (TRN) is crucial for regulating information flow between the cerebral cortex and thalamus, and its malfunction is associated with sensory and behavioral issues.
  • The transcription factors Ascl1 and Isl1 play a key role in determining TRN neuron identity while inhibiting non-TRN neurons, essential for forming important axonal connections.
  • Disruption of axonal pathways can lead to developmental issues, but increasing Isl1 levels can reverse some of these effects in TRN neurons lacking Ascl1, highlighting Isl1's importance in TRN development.
View Article and Find Full Text PDF
Article Synopsis
  • Cashmere, a valuable fiber from Cashmere goats, relies on dermal papilla cells for hair growth and is influenced by microRNAs, particularly miR-144.
  • The study examined how miR-144 interacts with the Lhx2 gene, using various techniques to analyze this relationship in cultured dermal papilla cells.
  • Results showed that miR-144 directly targets Lhx2, reducing its expression and impacting hair growth dynamics, which could lead to advancements in cashmere production and treatments for hair growth issues.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!