A new type of silica-based stationary phase with dramatically improved acid stability compared to any currently available silica-based stationary phase has been developed. Superior low pH stability is achieved by first self-assembling a densely bonded monolayer of (chloromethyl)-phenylethyltrichlorosilane (CMPES). The self-assembly step is followed by a Friedel-Crafts cross-linking of the reactive moieties with their neighbors, by addition of secondary, cross-linkable aromatic reagents, or by both. This phase is not endcapped. Elemental analysis data shows that an aluminum chloride catalyst is very effective at bonding aromatic cross-linking reagents, such as styrene heptamer and triphenylmethane, to the reactive CMPES monolayer. The stability of the retention factor of decylbenzene on the cross-linked self-assembled CMPES phases is compared to a sterically protected C18 phase to illustrate its superior resistance to acid-catalyzed-phase loss. Inverse size exclusion chromatography and flow-curve comparisons of the cross-linked self-assembled CMPES and the sterically protected C18 stationary phases illustrate their similar chromatographic efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac020206dDOI Listing

Publication Analysis

Top Keywords

cross-linked self-assembled
12
stationary phases
12
silica-based stationary
12
low stability
8
stationary phase
8
self-assembled cmpes
8
sterically protected
8
protected c18
8
stationary
5
highly cross-linked
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!