Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
One of the key goals in bioprocess monitoring is to achieve real-time knowledge of conditions within the bioreactor, i.e., in-situ. Near-infrared spectroscopy (NIRS), with its ability to carry out multi-analyte quantification rapidly with little sample presentation, is potentially applicable in this role. In the present study, the application of NIRS to a complex, fed-batch industrial E. coli (RV308/PHKY531) process was investigated. This process undergoes a series of temperature changes and is vigorously agitated and aerated. These conditions can pose added challenges to in-situ NIRS. Using the measurement of a key analyte (biomass) as an illustration, the details of the relationship between the at-line and in-situ use of NIRS are considered from the viewpoint of both theory and practical application. This study shows that NIRS can be used both at-line and in-situ in order to achieve good predictive models for biomass. There are particular challenges imposed by in-situ operation (loss of wavelength regions and noise) which meant the need for signal optimisation studies. This showed that whilst the at-line modelling process may provide some useful information for the in-situ process, there were distinct differences. This study shows that the in-situ use of NIRS in a highly challenging matrix (similar to those encountered in current industrial practice) is possible, and thus extends previous works in the area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.10383 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!