A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Markovian chemicals "in silico" design (MARCH-INSIDE), a promising approach for computer aided molecular design II: experimental and theoretical assessment of a novel method for virtual screening of fasciolicides. | LitMetric

A novel method for in silico selection of fluckicidal drugs is introduced. Two QSARs that permit us to discriminate between fasciolicide and non-fasciolicide drugs (the first) and to outline some conclusions about the possible mechanism of action of a chemical (the second) are performed. The first model correctly classified 93.85% of compounds in the training series and 89.5% of the compounds in the predicting one. This model correctly classified 87.7, 93.8, 92.2 and 93.9% of compounds in leave- n-out cross validation procedures when n takes values from 2 to until 6. The model seems to be stable in around 92% of good classification in leave- n-out cross validation analysis when n>6. The second model correctly classified 70% of non-fasciolicide compounds, 85.71% of beta-tubulin inhibitors and 100% of proton ionophores in the training set. This model recognizes as proton ionophores 100% of any nitrosalicylanilides in the predicting series. Both models have a low p-level <0.05. Finally, the experimental assay of six organic chemicals by an in vivo test permit us to carry out an assessment of the model with a fairly good 100% agreement between experiment and theoretical prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-002-0088-7DOI Listing

Publication Analysis

Top Keywords

model correctly
12
correctly classified
12
novel method
8
leave- n-out
8
n-out cross
8
cross validation
8
proton ionophores
8
model
5
markovian chemicals
4
chemicals "in
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!