A novel polyphosphate kinase (PPK) was retrieved from an uncultivated organism in activated sludge carrying out enhanced biological phosphorus removal (EBPR). Acetate-fed laboratory-scale sequencing batch reactors were used to maintain sludge with a high phosphorus content (approximately 11% of the biomass). PCR-based clone libraries of small subunit rRNA genes and fluorescent in situ hybridization (FISH) were used to verify that the sludge was enriched in Rhodocyclus-like beta-Proteobacteria known to be associated with sludges carrying out EBPR. These organisms comprised approximately 80% of total bacteria in the sludge, as assessed by FISH. Degenerate PCR primers were designed to retrieve fragments of putative ppk genes from a pure culture of Rhodocyclus tenuis and from organisms in the sludge. Four novel ppk homologs were found in the sludge, and two of these (types I and II) shared a high degree of amino acid similarity with R. tenuis PPK (86 and 87% similarity, respectively). Dot blot analysis of total RNA extracted from sludge demonstrated that the Type I ppk mRNA was present, indicating that this gene is expressed during EBPR. Inverse PCR was used to obtain the full Type I sequence from sludge DNA, and a full-length PPK was cloned, overexpressed, and purified to near homogeneity. The purified PPK has a specific activity comparable to that of other PPKs, has a requirement for Mg(2+), and does not appear to operate in reverse. PPK activity was found mainly in the particulate fraction of lysed sludge microorganisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC126439PMC
http://dx.doi.org/10.1128/AEM.68.10.4971-4978.2002DOI Listing

Publication Analysis

Top Keywords

sludge
10
polyphosphate kinase
8
activated sludge
8
enhanced biological
8
biological phosphorus
8
phosphorus removal
8
ppk
8
kinase activated
4
sludge performing
4
performing enhanced
4

Similar Publications

Introduction: The establishment of a high-throughput quantification approach for waterborne pathogenic protozoa and helminths is crucial for rapid screening and health risk assessment.

Methods: We developed a high-throughput quantitative polymerase chain reaction (HT-qPCR) assay targeting 19 waterborne protozoa and 3 waterborne helminths and validated its sensitivity, specificity, and repeatability. The assay was then applied to test various environmental media samples.

View Article and Find Full Text PDF

Widespread polyethylene terephthalate microplastics (PET MPs) have played unintended role in nitrous oxide (NO) turnovers (i.e., production and consumption) at wastewater treatment plants (WWTPs).

View Article and Find Full Text PDF

An integrated strategy for sequential nitrite removal and methane recovery: Sludge fermentation driven by nitrite reduction.

Water Res X

May 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.

Although the treatment of sludge with free nitrous acid can effectively recover short chain fatty acids, the feasibility of sequential nitrite reduction and methane recovery without acidic pH adjustment is still scarcely studied. Therefore, this study aimed to provide insights into the effect of nitrite at different levels on nitrite reduction and methane production. The results showed that the nitrite concentrations of 100, 200, 400 and 800 mg/L were completely reduced in 1, 2, 2 and 4 days, respectively.

View Article and Find Full Text PDF

Design of S-Scheme CuInS/CeO Heterojunction for Enhanced Photocatalytic Degradation of Pharmaceuticals in Wastewater.

Langmuir

January 2025

Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.

The release of common medications and illegal drugs into the environment could be potentially harmful to the ecosystem and hamper the behavior and growth of plants and animals. These pollutants gain access to water through sewage and factory discharges and have been found to exceed safety limits in water bodies. Therefore, there is an urgent need for improved wastewater purification systems.

View Article and Find Full Text PDF

Effect of sludge-based biochar on the stabilization of Cd in soil: experimental and theoretical studies.

Int J Phytoremediation

January 2025

Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China.

Soil heavy metal contamination and sludge disposal have become globally environmental issues problems of great concern. Utilizing sludge pyrolysis to produce biochar for remediating heavy metal-contaminated soil is an effective strategy to solve these two environmental problems. In this study, municipal sewage sludge and papermaking sludge were used as feedstock to prepare co-pyrolyzed biochar, which was then applied to reduce the toxicity of Cd in soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!