Alpha-fetoprotein (AFP) serum levels in man have long been utilized as a tumor marker and as a birth defect screening agent in the clinical laboratory. Although the physiological role of AFP has remained obscure, the stereotypic carrier/transport function of a fetal counterpart to albumin has been attributed to this oncofetal protein. However, reports from a multitude of investigators in the last decade have provided a rationale to reconsider and extend the biological role of AFP to include cell growth modulation during development. Previously, a leucine zipper-like (heptad) motif, which mimicked that found in the steroid/thyroid receptor superfamily, was postulated for portions of the third domain of AFP. The present report proposes the presence of additional potential heterodimerization sites for the nuclear receptor superfamily members and other growth factors in the second and third domains of human AFP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1054/mehy.2001.1445 | DOI Listing |
J Med Chem
January 2025
Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Radiopharmaceutical theranostics holds significant promise in tumor diagnosis and treatment, but suboptimal tumor uptake and retention remain a persistent limitation. We have conjugated a unique albumin binder to our previously developed heterodimeric precursor HX01 and achieved a novel precursor L6, aiming to prolong circulation time and enhance tumor accumulation and retention. However, we observed that the NGR sequence of L6 was gradually rearranged to iso-DGR under alkaline conditions, resulting in decreased stability.
View Article and Find Full Text PDFProteins
January 2025
Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA.
Starch accumulation in plants provides carbon for nighttime use, for regrowth after periods of dormancy, and for times of stress. Both ɑ- and β-amylases (AMYs and BAMs, respectively) catalyze starch hydrolysis, but their functional roles are unclear. Moreover, the presence of catalytically inactive amylases that show starch excess phenotypes when deleted presents questions on how starch degradation is regulated.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China.
The balance of mitochondrial fission and fusion plays an important role in maintaining the stability of cellular homeostasis. Abnormal mitochondrial fission and fragmentation have been shown to be associated with oxidative stress, which causes a variety of human diseases from neurodegeneration disease to cancer. Therefore, the induction of mitochondrial aggregation and fusion may provide an alternative approach to alleviate these conditions.
View Article and Find Full Text PDFIntegrins are a large family of heterodimeric receptors important for cell adhesion and signaling. Integrin α5β1, also known as the fibronectin receptor, is a key mediator of angiogenesis and its dysregulation is associated with tumor proliferation, progression, and metastasis. Despite numerous efforts, α5β1-targeting therapeutics have been unsuccessful in large part due to efficacy and off-target effects.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
genes play essential roles in patterning the anteroposterior axis of animal embryos and in the formation of various organs. In mammals, there are 39 genes organized into four clusters (HOXA-D) located on different chromosomes. In relationship with their orderly arrangement along the chromosomes, these genes show nested expression patterns which imply that embryonic territories co-express multiple genes along the main body axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!