Traumatic brain injury (TBI) results in an acute altered metabolic profile of brain tissue which resolves within hours of initial insult and yet some of the functional deficits and cellular perturbations persist for days. It is hypothesized that a delayed change in energy status does occur and is a factor in the neural tissue's ability to survive and regain function. Regional metabolic profile and glucose consumption were determined at either 1 or 3 days following two different intensities of parasagittal fluid-percussion (F-P). A significant decrease in both 1CMRgluc and levels of ATP and P-creatine was evident in the hemisphere ipsilateral to the trauma at 1 day after the insult. The effect was greater in the cortical than the subcortical regions and was more pronounced at the higher trauma intensity. Normalization of glucose consumption and energy levels was essentially complete by 3 days. It would appear that the delayed metabolic changes at 1 day postinsult cannot be explained by a secondary ischemia since the changes in the metabolite profile do not elicit an increase in the consumption of glucose. These changes in energy metabolites may account for and contribute to the chronic neurological deficits following TBI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1019973921217 | DOI Listing |
Elife
January 2025
Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Estrogen significantly impacts women's health, and postmenopausal hypertension is a common issue characterized by blood pressure fluctuations. Current control strategies for this condition are limited in efficacy, necessitating further research into the underlying mechanisms. Although metabolomics has been applied to study various diseases, its use in understanding postmenopausal hypertension is scarce.
View Article and Find Full Text PDFALTEX
January 2025
In vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany.
Hypertension
January 2025
Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan. (Y. Zhao, T. Sakurai, A.K., M.T., Y.I.-S., H.K., Y.M., Y. Zhang, Q.G., P.L., K.H., M.H., J.L., T. Shindo).
Background: Adrenomedullin 2 (AM2) plays critical roles in regulating blood pressure and fluid balance. However, the specific involvement of AM2 in cardiac hypertrophy has not been comprehensively elucidated, warranting further investigation into its molecular mechanisms and therapeutic implications.
Methods: Cardiac hypertrophy was induced in adult mice lacking AM2 (AM2-/-) using transverse aortic constriction surgery.
ASIDE Intern Med
December 2024
Montefiore-Einstein Cerebrovascular Research Lab, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
Introduction: Managing idiopathic intracranial hypertension (IIH) is challenging due to limited treatment options. This study evaluates metformin as a potential therapy for IIH, examining its impact on disease outcomes and safety.
Methods: We performed a retrospective cohort study using the TriNetX database, covering data from 2009 to August 2024.
Prostate Int
September 2024
Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
Background: The causal associations and potential mechanisms between prostatic diseases, the predominant male urological disorders, and the course of COVID-19 remain unclear.
Methods: A two-sample Mendelian randomization (MR) analysis was performed to evaluate causal associations between prostate cancer, benign prostatic hyperplasia, and prostatitis and different COVID-19 outcomes (SARS-CoV-2 infection, hospitalized COVID-19, and severe COVID-19). Reverse MR, linkage disequilibrium score regression, and Bayesian colocalization analyses were subsequently performed to strengthen the identified causal relationships.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!