The lost IUD.

Contracept Deliv Syst

Published: January 1984

Ultrasonic B-scanning is a convenient method of confirming the presence of an IUD within the endometrial cavity. The acoustic properties of each device from normal uterine tissue are demonstrated according to the particular type of device used. These produce easily recognizable patterns. The value of ultrasonic scanning the the event of malposition, expulsion, perforation, and unplanned pregnancy with an IUD in situ are discussed. Ultrasonic scanning is a safe, noninvasive method of locating an IUD within the uterine cavity and thereby assessing correct placement. Difficulties encountered in localization of the IUD within the uterine cavity are also discussed. Methods of management of a misplaced IUD are further presented.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ultrasonic scanning
8
iud uterine
8
uterine cavity
8
iud
5
lost iud
4
iud ultrasonic
4
ultrasonic b-scanning
4
b-scanning convenient
4
convenient method
4
method confirming
4

Similar Publications

Are ultrasonic tips associated with final irrigation protocols effective in removing biofilms in long oval canals and dentinal tubules?

Clin Oral Investig

January 2025

Department of Restorative Dentistry, Dental Materials, and Endodontics, Bauru School of Dentistry, University of São Paulo, Rua Siqueira Campos, 180, Centro, Vitória da Conquista, Bauru, São Paulo, BA, ZIP: 45.000-455, Brazil.

Objective: This study investigated the associations among endodontic instruments, ultrasonic tips and various final irrigation protocols for removing intracanal and intratubular biofilms in long oval canals.

Methodology: One hundred mandibular premolars inoculated with Enterococcus faecalis were divided into two groups: the control group (CG: n = 10), which received no treatment; and the test groups (n = 30), which included saline (SS), sodium hypochlorite (2.5% NaOCl) and chlorhexidine (2% CHX).

View Article and Find Full Text PDF

Ultrasonic-Assisted Synthesis and Cytocompatibility Assessment of TiO/SiO Nanoparticles-Impregnated Gum Arabic Nanocomposite: Edible Coating of Dates for Shelf-Life Extension.

Polymers (Basel)

January 2025

Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh P.O. Box 2460, Saudi Arabia.

The post-harvest management of fruit is crucial to preventing its decay and loss. Generally, edible coatings are applied to fruit to avoid decay and microbial contamination. We have used ultrasonication to synthesize TiO and residue-derived biosilica embedded in gum arabic nanocomposite.

View Article and Find Full Text PDF

This study investigates the effect of ultrasonic-assisted preparation on the structural and physicochemical properties of water caltrop starch-palmitic acid complexes as a function of ultrasound intensity and treatment time. All samples exhibited the characteristic birefringence of starch-lipid complexes under the polarized microscope, and flake-like and irregular structure under scanning electron microscope (SEM), indicating the formation of complexes through ultrasonic-assisted preparation. X-ray diffraction pattern further confirmed the transition from the original A-type structure for native starch to V-type structure for starch-lipid complexes, and the relative crystallinity of starch-lipid complexes increased as the ultrasound intensity and treatment time increased.

View Article and Find Full Text PDF

Adding value to food by-products, such as pumpkin seeds, is an important strategy for the complete utilization of plant foods and advancing sustainability goals. This study aimed to maximize the production of bioactive peptides from pumpkin seed protein (PSP) by combining ultrasonic (US) pretreatment (40 kHz, 23.8 W/L) with enzymatic hydrolysis.

View Article and Find Full Text PDF

The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!