Hantaviruses are rodent-borne agents that cause severe human diseases. The coding sequences for the authentic and a His-tagged Puumala hantavirus (PUUV) nucleocapsid (N) protein were expressed in yeast (Saccharomyces cerevisiae). N-specific monoclonal antibodies demonstrated native antigenicity of the two proteins. All bank voles vaccinated with the His-tagged N protein in Freund's adjuvant (n=12) were defined as completely protected against subsequent virus challenge, based on the absence of viral N protein, RNA and G2-specific antibodies. In the group vaccinated with the yeast-expressed authentic N protein in Freund's adjuvant, 2/6 animals were defined as completely protected and 4/6 as partially protected. Moreover, when animals were vaccinated with the His-tagged N protein in an adjuvant certified for human use (alum), all (n=8) were at least partially protected (six completely, two partially). The general advantages of the yeast expression system make the described recombinant proteins promising candidate vaccines against hantavirus infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0264-410x(02)00341-9DOI Listing

Publication Analysis

Top Keywords

puumala hantavirus
8
nucleocapsid protein
8
vaccinated his-tagged
8
his-tagged protein
8
protein freund's
8
freund's adjuvant
8
defined completely
8
completely protected
8
partially protected
8
protein
6

Similar Publications

Article Synopsis
  • Research conducted on 3,400 febrile patients in Peru between 2020-2021 revealed a positive case of Rio Mamore hantavirus, highlighting the endemic presence of this virus in the region.
  • Genetic analysis showed a strong similarity to past rodent-associated hantavirus cases from Loreto, indicating ongoing circulation.
  • Findings suggest the need for enhanced hantavirus diagnostics and surveillance in Peru and Latin America due to the detection of multiple distinct hantavirus strains.
View Article and Find Full Text PDF

Hantaan virus (HTNV) and Puumala virus (PUUV) are pathogenic zoonoses found in Asia and Europe, respectively. We conducted a randomized Phase 1 clinical trial of individual HTNV and PUUV DNA vaccines targeting the envelope glycoproteins (GnGc), as well as a combined HTNV/PUUV DNA vaccine delivered at varying doses using the PharmaJet Stratis® needle-free injection system (NCT02776761). Cohort 1 and 2 vaccines consisted of 2 mg/vaccination of HTNV or PUUV plasmid, respectively.

View Article and Find Full Text PDF

Genetic analysis implicates ERAP1 and HLA as risk factors for severe Puumala virus infection.

Hum Mol Genet

November 2024

Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland.

Article Synopsis
  • Puumala virus (PUUV) can lead to serious illnesses like Hemorrhagic Fever with Renal Syndrome, but the genetic factors affecting disease severity in humans are not well understood.
  • A genome-wide association study using data from 2227 cases helped identify significant associations at the Human Leukocyte Antigen (HLA) locus and the ERAP1 gene, which are important for immune response.
  • The study found a specific genetic variant (rs26653) in the ERAP1 gene and identified associations with several HLA alleles that suggest how these genetic factors may influence susceptibility to severe PUUV infections.
View Article and Find Full Text PDF

Old World Orthohantaviruses cause hemorrhagic fever with renal syndrome (HFRS) characterized by increased vascular permeability and acute kidney injury (AKI). Despite the systemic nature of the disease, the virus enters humans through inhalation and therefore initially encounters the immunoglobulin class A (IgA) dominated mucosal immune system. Herein, we characterized systemic IgA responses and their potential relationship to the mucosal immune activation by examining blood samples obtained from patients hospitalized due to acute Puumala orthohantavirus infection.

View Article and Find Full Text PDF

A Thailand orthohantavirus (THAIV) is endemic in Southeast Asia. This assumption is supported by isolation of THAIV from local small mammals. Also, anti-orthohantavirus antibodies were detected in human serum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!