The PTEN/PI3K signaling pathway regulates a vast array of fundamental cellular responses. We show that cardiomyocyte-specific inactivation of tumor suppressor PTEN results in hypertrophy, and unexpectedly, a dramatic decrease in cardiac contractility. Analysis of double-mutant mice revealed that the cardiac hypertrophy and the contractility defects could be genetically uncoupled. PI3Kalpha mediates the alteration in cell size while PI3Kgamma acts as a negative regulator of cardiac contractility. Mechanistically, PI3Kgamma inhibits cAMP production and hypercontractility can be reverted by blocking cAMP function. These data show that PTEN has an important in vivo role in cardiomyocyte hypertrophy and GPCR signaling and identify a function for the PTEN-PI3Kgamma pathway in the modulation of heart muscle contractility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0092-8674(02)00969-8DOI Listing

Publication Analysis

Top Keywords

cell size
8
cardiac contractility
8
contractility
5
regulation myocardial
4
myocardial contractility
4
contractility cell
4
size distinct
4
distinct pi3k-pten
4
pi3k-pten signaling
4
signaling pathways
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!