Caveolae are small, flask-shaped, non-clathrin coated invaginations of the plasma membrane of many mammalian cells. Caveolae have a coat that includes caveolin. They have been implicated in numerous cellular processes, including potocytosis. Since the human folate receptor (hFR) and other glycosyl-phosphatidylinositol GPI)-tailed proteins have been co-localized to caveolae, we studied the caveolin role in the hFR function by transfecting hFR and/or caveolin cDNA into Fisher rat thyroid epithelial (FRT) cells that normally do not express detectable levels of either protein. We isolated and characterized stable clones as follows: they express (1) high levels of caveolin alone, (2) hFR and caveolin, or (3) hFR alone. We discovered that hFR is correctly processed, sorted, and anchored by a GPI tail to the plasma membrane in FRT cells. No difference in the total folic acid binding or cell surface folic acid binding activity were found between the FRT cells that were transfected with hFR, or cells that were transfected with hFR and caveolin. The hFR that was expressed on the cell surface of clones that were transfected with hFR was also sensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) release, and incorporated radiolabeled ethanolamine that supports the attachment of a GPI-tail on hFR. We conclude that the processing, sorting, and function of hFR is independent on the caveolin expression in FRT cells.

Download full-text PDF

Source
http://dx.doi.org/10.5483/bmbrep.2002.35.4.395DOI Listing

Publication Analysis

Top Keywords

frt cells
16
hfr
12
caveolin hfr
12
transfected hfr
12
sorting function
8
human folate
8
folate receptor
8
caveolin
8
independent caveolin
8
caveolin expression
8

Similar Publications

Background: Synovial macrophages (SMs) are important effectors of joint health and disease. A novel Cx3CR1 + TREM2 + SM population expressing the tight junction protein claudin-5, was recently discovered in synovial lining. Ablation of these SMs was associated with onset of arthritis.

View Article and Find Full Text PDF

The sparse driver system for single-cell labeling and manipulation in .

bioRxiv

December 2024

Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.

In this protocol, we introduce a sparse driver system for cell-type specific single-cell labeling and manipulation in , enabling complete and simultaneous expression of multiple transgenes in the same cells. The system precisely controls expression probability and sparsity via mutant sites with reduced recombination efficiency and tunable FLP levels adjusted by heat-shock durations. We demonstrate that this generalizable toolkit enables tunable sparsity, multi-color staining, single-cell trans-synaptic tracing, single-cell manipulation, and analysis of cell-autonomous gene function.

View Article and Find Full Text PDF

Disruption of inhibitory interneurons is common in the epileptic brain and is hypothesized to play a pivotal role in epileptogenesis. Abrupt disruption and loss of interneurons is well-characterized in status epilepticus models of epilepsy, however, status epilepticus is a relatively rare cause of epilepsy in humans. How interneuron disruption evolves in other forms of epilepsy is less clear.

View Article and Find Full Text PDF

Sexual reproduction requires the choreographed interaction of female cells and molecules with sperm and seminal fluid. In internally fertilizing animals, these interactions are managed by specialized tissues within the female reproductive tract (FRT), such as a uterus, glands, and sperm storage organs. However, female somatic reproductive tissues remain understudied, hindering insight into the molecular interactions that support fertility.

View Article and Find Full Text PDF

Since CD4+ T cells are essential for regulating adaptive immune responses and for long lasting mucosal protection, changes in CD4+ T cell numbers and function are likely to affect protective immunity. What remains unclear is whether CD4+ T cell composition and function in the female reproductive tract (FRT) changes as women age. Here we investigated the changes in the composition and function of CD4+ T cells in the endometrium (EM), endocervix (CX), and ectocervix (ECX) with aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!