A study was made of the effect of the thyroid hormone thyrocalcitonin (TCT) on the electrolyte composition of the plasma and erythrocytes. In healthy persons and in the patients with various diseases of the cardiovascular system administration of 1 Unit of TCT per 1 kg of weight led to a significant reduction of the total plasma calcium and its diffusible fraction and also of plasma sodium. A course treatment with the hormone led to the enhancement of the hypocalciemic effect. In dogs administration of 10 Units of TCT per 1 kg of weight produced a more pronounced hypocalciemic effect. The rest of blood electrolytes displayed no significant changes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

electrolyte composition
8
tct weight
8
[changes electrolyte
4
composition blood
4
blood humans
4
humans animals
4
animals influence
4
influence thyrocalcitonin]
4
thyrocalcitonin] study
4
study thyroid
4

Similar Publications

All-solid-state lithium metal batteries are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of lithium dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes.

View Article and Find Full Text PDF

Exploring new ecological and simultaneous processes to modify wood fibers (WF) by-products is a required pathway toward circular economy and sustainability. Thus, plasma-activated water (PAW) and ultrasound (U) were employed as alternative methods to modify WF in a continuous process. Such treatments promoted the etching and cavities on the WF surface that destabilized the hydrogen bonds of the hemicellulose and lignin molecules, increasing the cellulose fraction.

View Article and Find Full Text PDF

As batteries drive the transition to electrified transportation and energy systems, ensuring their quality, reliability, lifetime, and safety is crucial. While the solid electrolyte interphase (SEI) is known to govern these performance characteristics, its dynamic nature makes understanding its nucleation, growth, and composition an ambitious, yet elusive aspiration. This work employs chalcogenide fibres embedded in negative electrode materials for operando Infra-red Fibre-optic Evanescent Wave Spectroscopy (IR-FEWS), combined with Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) algorithms for spectra analysis.

View Article and Find Full Text PDF

Ammonia electrosynthesis through the lithium-mediated approach has recently reached promising results towards high activity and selectivity in aprotic media, reaching high Faradaic efficiency (FE) values and NH3 production rates. To fasten the comprehension and optimization of the complex lithium-mediated nitrogen reduction system, for the first time a multivariate approach is proposed as a powerful tool to reduce the number of experiments in comparison with the classical one-factor-at-a-time approach. Doehlert design and surface response methodology are employed to optimize the electrolyte composition for a batch autoclaved cell.

View Article and Find Full Text PDF

Silicon is widely recognized as a promising anode material for all-solid-state batteries (ASSBs) due to exceptional specific capacity, abundant availability, and environmental sustainability. However, the considerable volume expansion and particle fragmentation of Si during cycling lead to significant performance degradation, limiting its practical application. Herein, the development of a pre-lithiated Si-based composite anode (c-LiSi) is presented, designed to address the key challenges faced by Si-based anodes, namely severe volume changes and low electrochemical stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!