Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), utilizing an on-probe sample pretreatment, was applied to the rapid and direct detection of intact phospholipids from whole bacterial cells. The sample preparation procedure involved depositing growing bacterial colonies from culture dishes directly onto the MALDI probe followed by treatment of the sample spot with a 3 micro L aliquot of an aqueous 0.05 M solution of sodium iodide prior to the addition of a 2,5-dihydroxybenzoic acid (DHB) matrix solution (ca. 8 mg dissolved in 70% acetonitrile/30% H(2)O containing 0.1% of trifluoroacetic acid). The MALDI spectra obtained from whole bacteria cells showed a series of ions generated from bacterial phospholipids, such as phosphatidylethanol-amines (PEs) and phosphatidylglycerols (PGs), which were clearly observed as well-resolved peaks. The ranges of the observed total carbon numbers in two acyl groups for PEs and PGs (30-36 and 33-36, respectively) were in good agreement with those reported previously. Furthermore, the distinct discrimination of four species of the Enterobacteriaceae family cultured identically was achieved by using principal components analysis (PCA) conducted on the relative peak intensities of phospholipids observed from the MALDI spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.802DOI Listing

Publication Analysis

Top Keywords

intact phospholipids
8
phospholipids bacterial
8
bacterial cells
8
matrix-assisted laser
8
laser desorption/ionization
8
mass spectrometry
8
on-probe sample
8
sample pretreatment
8
maldi spectra
8
rapid analysis
4

Similar Publications

Studies on the mechanisms and regulation of functional assemblies of SNARE proteins mediating membrane fusion essentially make use of recombinant proteins and artificial phospholipid bilayers. We have developed an easy-to-use in vivo system reconstituting membrane fusion in living bacteria. It relies on the formation of caveolin-dependent intracytoplasmic cisternae followed by the controlled synthesis of members of the synaptic SNARE machinery.

View Article and Find Full Text PDF

Glomerular endothelial cells (GECs) are pivotal in developing glomerular sclerosis disorders. The advancement of focal segmental glomerulosclerosis (FSGS) is intimately tied to disruptions in lipid metabolism. Sphingosine-1-phosphate (S1P), a molecule transported by high-density lipoproteins (HDL), exhibits protective effects on vascular endothelial cells by upregulating phosphorylated endothelial nitric oxide synthase (p-eNOS) and enhancing nitric oxide (NO) production.

View Article and Find Full Text PDF

Finding effective antibiotics against multi-resistant strains of bacteria has been a challenging race. Linker-Evolved-Group-Optimized-Lipophosphonoxins (LEGO-LPPOs) are small modular synthetic antibacterial compounds targeting the cytoplasmic membrane. Here we focused on understanding the reasons for the variable efficacy of selected LEGO-LPPOs (LEGO-1, LEGO-2, LEGO-3, and LEGO-4) differing in hydrophobic and linker module structure and length.

View Article and Find Full Text PDF

Capsaicin is a polyphenol with a well-known anti-obesity potential, which could activate brown adipose tissue and promote the browning of white adipose tissue. Indeed, conventional proteomics have been used to investigate the browning effects of capsaicin on adipose tissue. However, the existence of a layer of white adipose tissue above the interscapular brown adipose tissue poses a great challenge to obtain intact interscapular brown adipose tissue without including adjacent white adipose tissue.

View Article and Find Full Text PDF

Fluorine-19 is an ideal nucleus for studying biological systems using NMR due to its rarity in biological environments and its favorable magnetic properties. In this work, we used a mixture of monofluorinated palmitic acids (PAs) as tracers to investigate the molecular interaction of the fluorinated drug rosuvastatin in model lipid membranes. More specifically, PAs labeled at the fourth and eighth carbon positions of their acyl chains were coincorporated in phospholipid bilayers to probe different depths of the hydrophobic core.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!