The effects of eight catechin derivatives on vascular tone in rat thoracic aorta were examined. Catechin derivatives (10 microM) potentiated the contractile response to phenylephrine in endothelium-intact arteries. The potentiations produced by EGCg and EGC were almost absent in endothelium-denuded arteries and abolished by N(G)-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis. The catechin derivatives also inhibited endothelium-dependent relaxation in response to acetylcholine. The order of catechin derivatives ranked in terms of both increasing vascular reactivity and impairing endothelium-dependent relaxation was similar; (-)-gallocatechin (GC) >or= (-)-epigallocatechin (EGC) >or= (-)-gallocatechin gallate (GCg) >or= (-)-epigallocatechin gallate (EGCg) >or= (-)-catechin (C) >or= (-)-epicatechin (EC) >or= (-)-catechin gallate (Cg) >or= (-)-epicatechin gallate (ECg). In addition, EGC inhibited the endothelium-independent relaxation evoked by both sodium nitroprusside and NOC-7, a spontanous NO releaser, but EGCg inhibited only that by NOC-7. These findings indicate that catechin derivatives produce a potentiation of the contractile response and an inhibition of the vasorelaxant response, probably through inactivation of endothelium-derived nitric oxide (NO), and that the hydroxyl on C-5 of the B ring together with the stereoscopic structure between the C-3 group and the B ring of flavanols was of importance in mediating the above effects and that the substitution of a gallate group of C-3 attenuated the effects, probably due to a decreased response to solube guanylate cyclase in vascular smooth muscle cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0024-3205(02)02080-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!