Fetal alcohol exposure causes severe neuropsychiatric problems, but mechanisms of the ethanol-associated changes in central nervous system development are unclear. In vivo, ethanol's interaction with N-methyl-D-aspartate (NMDA) and gamma-aminobutyric acid type A (GABA(A)) receptors may cause increased apoptosis in the immature forebrain. We examined whether ethanol affects survival of neonatal hippocampal neurons in primary cultures. A 6-day ethanol exposure killed hippocampal neurons with an LD50 of approximately 25 mM. Elevated extracellular potassium or insulin-related growth factor 1 inhibited cell loss. Although potentiation of GABA(A) receptors or complete block of NMDA receptors also kills hippocampal neurons, pharmacological studies suggest that ethanol's interaction with GABA(A) and NMDA receptors is not sufficient to explain ethanol's effects on neuronal survival. Ca(2+) influx in response to depolarization was depressed >50% by chronic ethanol treatment. We suggest that chronic ethanol may promote neuronal loss through a mechanism affecting Ca(2+) influx in addition to effects on postsynaptic GABA and glutamate receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1006/nbdi.2002.0523DOI Listing

Publication Analysis

Top Keywords

hippocampal neurons
16
ethanol's interaction
8
gabaa receptors
8
nmda receptors
8
ca2+ influx
8
chronic ethanol
8
receptors
5
ethanol-induced death
4
death postnatal
4
hippocampal
4

Similar Publications

Protective Effect of Rosmarinic Acid on Endotoxin-Induced Neuronal Damage Through Modulating GRP78/PERK/MANF Pathway.

Drug Des Devel Ther

January 2025

Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.

Objective: Neuronal damage is criminal to cognitive dysfunction, closely related to endoplasmic reticulum stress (ERS). However, due to the pathogenesis of endotoxin-induced long-term cognitive dysfunction is not fully clarified, there is still a lack of effective treatment. This study was conducted to explore the protective effects and mechanism of rosmarinic acid (RA) against ERS in endotoxin-induced cognitive dysfunction in mice and neuronal injury in cells.

View Article and Find Full Text PDF

Background: Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure.

View Article and Find Full Text PDF

Introduction: Perioperative neurocognitive dysfunction (PND) is a significant challenge for patients who need surgery worldwide. Morphine can trigger an intense inflammatory reaction in the central nervous system (CNS) at the same time as analgesia, thus adverse effects aggravating PND. Microglia polarization is closely involved in the regulation of neuroinflammation and the TLR4/MyD88/NF-κB signaling pathway.

View Article and Find Full Text PDF

Velvet bean is a native Indonesian legume containing L-dopa, yet it remains underutilized. The aim of this study was to analyze the effects of different types of tempe (soybean, velvet bean, and their combination) on cognitive function, brain histology, dopamine levels, and serum β-amyloid in rats, as well as to identify the parameters most influencing cognitive function, including brain mass and volume, hippocampal neuron count, and dopamine and β-amyloid levels. An experimental study was conducted using a completely randomized design with one factor: the protein source of diet.

View Article and Find Full Text PDF

Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!