Alkyl hydroperoxide reductase 1 (Ahp1p) is a thioredoxin peroxidase of the peroxiredoxin family expressed by Saccharomyces cerevisiae. Recently, disruption of the AHP1 gene has shown that the gene is not essential for yeast growth on glucose medium but revealed a high sensitivity of null mutants to organic peroxides, suggesting that Ahp1p is an important enzyme implicated in oxidative stress protection in S. cerevisiae. To gain insight into antioxidant enzymatic mechanisms involved in cell protection against metal toxicity and glutathione depletion, we investigated the resistance of S. cerevisiae, in which the AHP1 gene was disrupted, against several metals and diethyl maleate, a glutathione depleting agent. We report that Ahp1p protects yeast against toxicity induced by copper, cobalt, chromium, arsenite, arsenate, mercury, zinc and diethyl maleate, suggesting that Ahp1p plays an important role in S. cerevisiae in the protection against metals possibly by reducing peroxides generated in cells by these compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-4274(02)00280-1 | DOI Listing |
Molecules
January 2025
Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA.
Five representatives of a novel type of di(hydroperoxy)alkane adducts of phosphine oxides have been synthesized and fully characterized, including their solubility in organic solvents. The phosphine oxide CyPO () has been used in combination with the corresponding aldehydes to create the adducts CyPO·(HOO)CHCH (), CyPO·(HOO)CHCHCH (), CyPO·(HOO)CH(CH)CH (), CyPO·(HOO)CH(CH)CH (), and CyPO·(HOO)CH(CH)CH (). All adducts crystallize easily and contain the peroxide and phosphine oxide hydrogen-bonded in 1:1 ratios.
View Article and Find Full Text PDFElife
January 2025
Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, United States.
is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitüsü) Çukurova University, Adana, Türkiye.
Background: Thermotoga maritima is an anaerobic hyperthermophilic eubacterium isolated from geothermally heated maritime surfaces. It can grow at temperatures up to 80 degrees Celsius.
Methods: A 2.
J Am Chem Soc
January 2025
Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095-1569, United States.
The homolytic cleavage of C-C bonds adjacent to specific functional groups has lately emerged as a versatile approach for molecular diversification. Despite the ubiquity and synthetic utility of ketones, radical fragmentation of their α-C-C bonds has proven to be a formidable challenge. Here, we present a broadly applicable deacylative strategy designed to homolytically cleave aliphatic ketones of various complexities, including transformations of cycloalkanones into carboxylic acids tethered to C-centered free radicals that can be engaged in diverse radical-based processes.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
Objectives: Bone remodeling imbalance contributes to osteoporosis. Though current medications enhance osteoblast involvement in bone formation, the underlying pathways remain unclear. This study was aimed to explore the pathways involved in bone formation by osteoblasts, we investigate the protective role of glycolysis and N6-methyladenosine methylation (m6A) against oxidative stress-induced impairment of osteogenesis in MC3T3-E1 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!