Alkyl hydroperoxide reductase 1 protects Saccharomyces cerevisiae against metal ion toxicity and glutathione depletion.

Toxicol Lett

Laboratory of Cell Biology, Department of Biology, Catholic University of Louvain, Place Croix du Sud, 5, B-1348 Louvain-la-Neuve, Belgium.

Published: October 2002

Alkyl hydroperoxide reductase 1 (Ahp1p) is a thioredoxin peroxidase of the peroxiredoxin family expressed by Saccharomyces cerevisiae. Recently, disruption of the AHP1 gene has shown that the gene is not essential for yeast growth on glucose medium but revealed a high sensitivity of null mutants to organic peroxides, suggesting that Ahp1p is an important enzyme implicated in oxidative stress protection in S. cerevisiae. To gain insight into antioxidant enzymatic mechanisms involved in cell protection against metal toxicity and glutathione depletion, we investigated the resistance of S. cerevisiae, in which the AHP1 gene was disrupted, against several metals and diethyl maleate, a glutathione depleting agent. We report that Ahp1p protects yeast against toxicity induced by copper, cobalt, chromium, arsenite, arsenate, mercury, zinc and diethyl maleate, suggesting that Ahp1p plays an important role in S. cerevisiae in the protection against metals possibly by reducing peroxides generated in cells by these compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-4274(02)00280-1DOI Listing

Publication Analysis

Top Keywords

alkyl hydroperoxide
8
hydroperoxide reductase
8
saccharomyces cerevisiae
8
toxicity glutathione
8
glutathione depletion
8
ahp1 gene
8
suggesting ahp1p
8
diethyl maleate
8
cerevisiae
5
reductase protects
4

Similar Publications

Five representatives of a novel type of di(hydroperoxy)alkane adducts of phosphine oxides have been synthesized and fully characterized, including their solubility in organic solvents. The phosphine oxide CyPO () has been used in combination with the corresponding aldehydes to create the adducts CyPO·(HOO)CHCH (), CyPO·(HOO)CHCHCH (), CyPO·(HOO)CH(CH)CH (), CyPO·(HOO)CH(CH)CH (), and CyPO·(HOO)CH(CH)CH (). All adducts crystallize easily and contain the peroxide and phosphine oxide hydrogen-bonded in 1:1 ratios.

View Article and Find Full Text PDF

Altering the redox status of directly impacts its developmental cycle progression.

Elife

January 2025

Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, United States.

is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown.

View Article and Find Full Text PDF

Background: Thermotoga maritima is an anaerobic hyperthermophilic eubacterium isolated from geothermally heated maritime surfaces. It can grow at temperatures up to 80 degrees Celsius.

Methods: A 2.

View Article and Find Full Text PDF

Deacylative Homolysis of Ketone C(sp)-C(sp) Bonds: Streamlining Natural Product Transformations.

J Am Chem Soc

January 2025

Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095-1569, United States.

The homolytic cleavage of C-C bonds adjacent to specific functional groups has lately emerged as a versatile approach for molecular diversification. Despite the ubiquity and synthetic utility of ketones, radical fragmentation of their α-C-C bonds has proven to be a formidable challenge. Here, we present a broadly applicable deacylative strategy designed to homolytically cleave aliphatic ketones of various complexities, including transformations of cycloalkanones into carboxylic acids tethered to C-centered free radicals that can be engaged in diverse radical-based processes.

View Article and Find Full Text PDF

METTL14 Mediates m6A methylation to improve osteogenesis under oxidative stress condition.

Redox Rep

December 2025

Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.

Objectives: Bone remodeling imbalance contributes to osteoporosis. Though current medications enhance osteoblast involvement in bone formation, the underlying pathways remain unclear. This study was aimed to explore the pathways involved in bone formation by osteoblasts, we investigate the protective role of glycolysis and N6-methyladenosine methylation (m6A) against oxidative stress-induced impairment of osteogenesis in MC3T3-E1 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!