Aspartic acid-derived artificial lipids (ADLs; s indicates the number of the methylene groups, s=2, 4, 6, 8, 10, 12) (Scheme 1) with various carboxyl alkyl chains as head groups are designed and synthesized, which are incorporated into liposome membranes by sonication. Fluorescence resonance energy transfer (FRET) measurements indicate that ADL6, ADL8 and ADL10 have high lipid-mixing ability in the acidic solution. The other ADLs, however, do not induce remarkable liposome fusion at acidic nor neutral pH. The hydrophobicity of the head groups of ADL6, ADL8 and ADL10 is suitable as triggers of membrane fusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0009-3084(02)00053-1 | DOI Listing |
Chem Commun (Camb)
January 2025
Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
The cell membrane, characterized by its inherent asymmetry, functions as a dynamic barrier that regulates numerous cellular activities. This Highlight aims to provide the chemistry community with a comprehensive overview of the intriguing and underexplored inner leaflet, encompassing both fundamental biology and emerging synthetic modification strategies. We begin by describing the asymmetric nature of the plasma membrane, with a focus on the distinct roles of lipids, proteins, and glycan chains, highlighting the composition and biofunctions of the inner leaflet and the biological mechanisms that sustain membrane asymmetry.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
Vesicle fusion induces neurotransmitter release, orchestrated by synaptotagmin-1 (Syt-1) as a Ca sensor. However, the precise molecular mechanisms of Syt-1 remain controversial, with various and competing models proposed based on different ionic strengths. Syt-1, residing on the vesicle membrane alongside anionic phospholipids such as phosphatidylserine (PS), undergoes Ca-induced binding to its own vesicle membrane, known as the cis-interaction, which prevents the trans-interaction of Syt-1 with the plasma membrane.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, (Erstwhile: North Orissa University), Baripada, Odisha, 757003, India. Electronic address:
Our previous study revealed that lipid flip-flop inducing phytochemicals from Gymnema sylvestre increase membrane permeability of antimicrobials in S. aureus. However, their lipid flipping and membrane permeabilizing effect on methicillin resistant S.
View Article and Find Full Text PDFJ Neurosurg Spine
January 2025
2Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida.
Objective: Awake, endoscopic spinal fusion has been utilized as an ultra-minimally invasive surgery technique to accomplish the goals of spinal fixation, fusion, and disc height restoration. While many techniques exist for this approach, this series represents a single institution's experience with a large cohort and the evolution of this method.
Methods: The medical records of a consecutive series of 400 patients treated over a 10-year period were retrospectively reviewed.
ACS Nano
January 2025
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea.
Tumor-derived extracellular vesicle (tEV)-associated RNAs hold promise as diagnostic biomarkers, but their clinical use is hindered by the rarity of tEVs among nontumor EVs. Here, we present EV-CLIP, a highly sensitive droplet-based digital method for profiling EV RNA. EV-CLIP utilizes the fusion of EVs with charged liposomes (CLIPs) in a microfluidic chip.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!