Modulation of androgen receptor protein by culture conditions of human skin fibroblasts.

Int J Androl

Laboratorio de Hormonas y Receptores, Universidad de Chile, Santiago, Chile.

Published: October 2002

Cultures of skin fibroblasts show variation of androgen binding with culture conditions; binding variations are usually avoided by using confluent cultures. In this work, we analysed the effect of cell density and mitogenic agents on the level of androgen receptor (AR) of cultured human skin fibroblasts. Results demonstrated that in cultures of human skin fibroblasts, cellular binding of dihydrotestosterone was higher in cells grown at low than at high cell density. The reduction in binding resulted from a decrease in the number of high affinity receptors and not from a change in receptor affinity. Immunocytochemistry for AR showed greater staining intensity in cells grown at low than at high cell density. Additionally, immunoblot analysis demonstrated more AR protein in low cell density cultures. On the other hand, it was observed that cells grown at low cell density showed diminished androgen binding capacity after 24 h of treatment with insulin-like growth factor (IGF-l), basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), or granulocyte-colony stimulating factor (G-CSF); this effect of growth factors was not observed in cells grown at high cell density. In conclusion, we found that cell density of cultures and mitogenic agents can regulate AR binding activity in human fibroblasts. While we do not yet know how changes in cell density affect the amount of AR, we conclude that the mechanism could be mediated by activation of the tyrosine kinase pathway, as the effect was reproduced by mitogens.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2605.2002.00364.xDOI Listing

Publication Analysis

Top Keywords

cell density
32
skin fibroblasts
16
cells grown
16
human skin
12
grown low
12
high cell
12
growth factor
12
androgen receptor
8
culture conditions
8
androgen binding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!