This paper examines international standard-setting in the toxicology of pharmaceuticals during the 1990s, which has involved both the pharmaceutical industry and regulatory agencies in an organization known as the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The analysis shows that the relationships between innovation, regulatory science and 'progress' may be more complex and controversial than is often assumed. An assessment of the ICH's claims about the implications of 'technical' harmonization of drug-testing standards for the maintenance of drug safety, via toxicological testing, and the delivery of therapeutic progress, via innovation, is presented. By demonstrating that there is not a technoscientific validity for these claims, it is argued that, within the ICH, a discourse of technological innovation and scientific progress has been used by regulatory agencies and prominent parts of the transnational pharmaceutical industry to legitimize the lowering and loosening of toxicological standards for drug testing. The mobilization and acceptance of this discourse are shown to be pivotal to the ICH's transformation of reductions in safety standards, which are apparently against the interests of patients and public health, into supposed therapeutic benefits derived from promises of greater access to more innovative drug products. The evidence suggests that it is highly implausible that these reductions in the standards of regulatory toxicology are consistent with therapeutic progress for patients, and highlights a worrying aspect embedded in the 'technical trajectories' of regulatory science.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0306312702032003001 | DOI Listing |
Sci Rep
December 2024
Department of Architecture, Rafsanjan Branch, Islamic Azad University, Rafsanjan, Iran.
The advent of smart cities has brought about a paradigm shift in urban management and citizen engagement. By leveraging technological advancements, cities are now able to collect and analyze extensive data to optimize service delivery, allocate resources efficiently, and enhance the overall well-being of residents. However, as cities become increasingly interconnected and data-dependent, concerns related to data privacy and security, as well as citizen participation and representation, have surfaced.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China.
The INO80 chromatin remodeling complex plays a critical role in shaping the dynamic chromatin environment. The diverse functions of the evolutionarily conserved INO80 complex have been widely reported. However, the role of INO80 in modulating the histone variant H2A.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.
The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.
View Article and Find Full Text PDFThe proximity ligation-based Hi-C and derivative methods are the mainstream tools to study genome-wide chromatin interactions. These methods often fragment the genome using enzymes functionally irrelevant to the interactions per se, restraining the efficiency in identifying structural features and the underlying regulatory elements. Here we present Footprint-C, which yields high-resolution chromatin contact maps built upon intact and genuine footprints protected by transcription factor (TF) binding.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, 100871, Beijing, China.
Deciphering how noncoding DNA determines gene expression is critical for decoding the functional genome. Understanding the transcription effects of noncoding genetic variants are still major unsolved problems, which is critical for downstream applications in human genetics and precision medicine. Here, we integrate regulatory-specific neural networks and tissue-specific gradient-boosting trees to build SVEN: a hybrid sequence-oriented architecture that can accurately predict tissue-specific gene expression level and quantify the tissue-specific transcriptomic impacts of structural variants across more than 350 tissues and cell lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!