Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(75)80341-3DOI Listing

Publication Analysis

Top Keywords

presence hypermodified
4
hypermodified nucleotide
4
nucleotide hela
4
hela cell
4
cell saccharomyces
4
saccharomyces carlsbergensis
4
carlsbergensis ribosomal
4
ribosomal rnas
4
presence
1
nucleotide
1

Similar Publications

We designed and synthesized a set of four 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) derived from 5-substituted pyrimidines and 7-substituted 7-deazapurines bearing anionic substituents (carboxylate, sulfonate, phosphonate, and phosphate). The anion-linked dNTPs were used for enzymatic synthesis of modified and hypermodified DNA using KOD XL DNA polymerase containing one, two, three, or four modified nucleotides. The polymerase was able to synthesize even long sequences of >100 modified nucleotides in a row by primer extension (PEX).

View Article and Find Full Text PDF

The extent to which alteration of endogenous tRNA modifications may be exploited to improve genetic code expansion efforts has not been broadly investigated. Modifications of tRNAs are strongly conserved evolutionarily, but the vast majority of tRNA modifications are not essential. We identified queuosine (Q), a non-essential, hypermodified guanosine nucleoside found in position 34 of the anticodons of four  tRNAs as a modification that could potentially be utilized to improve sense codon reassignment.

View Article and Find Full Text PDF

Queuosine salvage in fission yeast by Qng1-mediated hydrolysis to queuine.

Biochem Biophys Res Commun

October 2022

Institut für Biologie, Lebenswissenschaftliche Fakultät, Humboldt-Universität zu Berlin, 10099, Berlin, Germany. Electronic address:

Queuosine (Q) is a hypermodified 7-deaza-guanosine nucleoside that is found at position 34, also known as the wobble position, of tRNAs with a GUN anticodon, and Q ensures faithful translation of the respective C- and U-ending codons. While Q is present in tRNAs in most eukaryotes, only bacteria can synthesize it denovo. In contrast, eukaryotes rely on external sources like their food and the gut microbiome in order to Q-modify their tRNAs, and Q therefore can be regarded as a micronutrient.

View Article and Find Full Text PDF

5-(β-d-Glucopyranosyloxymethyl)-2'-deoxyuridine and -cytidine 5'-O-triphosphates were prepared and used for polymerase-mediated (primer extension or PCR) synthesis of DNA containing glucosylated 5-hydroxymethyluracil (5hmU) or 5-hydroxymethyluracil (5hmC). The presence of any glucosylated pyrimidines fully protected DNA from cleavage by type II restriction endonucleases. On the other hand, while the presence of glucosylated 5hmU completely inhibited transcription by bacterial (Escherichia coli) RNA polymerase, the DNA containing the corresponding glucosylated 5hmC allowed a similar level of transcription as natural DNA.

View Article and Find Full Text PDF

MiaE (2-methylthio-N6-isopentenyl-adenosine37-tRNA monooxygenase) is a unique non-heme diiron enzyme that catalyzes the O2-dependent post-transcriptional allylic hydroxylation of a hypermodified nucleotide 2-methylthio-N6-isopentenyl-adenosine (ms2i6A37) at position 37 of selected tRNA molecules to produce 2-methylthio-N6-4-hydroxyisopentenyl-adenosine (ms2io6A37). Here, we report the in vivo activity, biochemical, spectroscopic characterization and X-ray crystal structure of MiaE from Pseudomonas putida. The investigation demonstrates that the putative pp-2188 gene encodes a MiaE enzyme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!