Restriction profiles of chromosomal DNA were studied in different Acidithiobacillus ferrooxidans strains grown on medium with Fe2+ and further adapted to another oxidation substrate (S0, FeS2, or sulfide ore concentrates). The restriction endonuclease XbaI digested the chromosomal DNA from different strains into different numbers of fragments of various sizes. Adaptation of two strains (TFBk and TFN-d) to new oxidation substrates resulted in structural changes in XbaI-restriction patterns of their chromosomal DNA. Such changes in the DNA restriction patterns occurred in strain TFBk after the adaptation to precyanidated gravitational pyrite-arsenopyrite concentrate (no. 1) from the Nezhdaninskoe deposit or to copper-containing ore from the Udokanskoe deposit and also in strain TFN-d adapted to untreated pyrite-arsenopyrite concentrate (no. 2) from the Nezhdaninskoe deposit. No changes in the number or size of the XbaI-restriction patterns of chromosomal DNA were revealed in either strain TFBk cultivated on media with pyrite from the Angren and Tulun deposits or in strains TFN-d and TFO grown on media with S0 and pyrite. Neither were changes observed in the XbaI-restriction patterns of the DNA from strain TFV-1, isolated from the copper ore of the Volkovskoe deposit, when Fe2+ was substituted with alternative substrates--S0, pyrite or concentrate no. 2 from the ore of Nezhdaninskoe deposit. In strain TFO, no differences in the XbaI-restriction patterns of the chromosomal DNA were revealed between the culture grown on medium containing concentrate no. 2 or the concentrate of surface-lying ore from Olimpiadinskoe deposit and the culture grown on medium with Fe2+. When strain TFO was cultivated on the ore concentrate from deeper horizons of the Olimpiadinskoe deposit, which are characterized by lower oxidation degree and high antimony content, mutant TFO-2 differing from the parent strain in the chromosomal DNA structure was isolated. The correlation between the lability of chromosomal DNA structure in A. ferrooxidans strains and the physical and chemical peculiarities of the isolation substrate and habitat is discussed.
Download full-text PDF |
Source |
---|
Mol Genet Genomic Med
January 2025
Prenatal Diagnosis Center, Langfang Maternal and Child Health Care Hospital, Langfang, Hebei, China.
Background: Skeletal dysplasia (SD) represents a series of highly heterogeneous congenital genetic diseases affecting the human skeletal system. Refined genetic diagnosis is helpful for the accurate diagnosis and prognosis evaluation of SDs.
Materials And Methods: In this study, we recruited 26 cases of SD and analyzed them with a designed sequential genetic detection.
Elife
January 2025
Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, United States.
The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of , a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy.
View Article and Find Full Text PDFMol Ecol Resour
January 2025
Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China.
Pardosa spiders, belonging to the wolf spider family Lycosidae, play a vital role in maintaining the health of forest and agricultural ecosystems due to their function in pest control. This study presents chromosome-level genome assemblies for two allied Pardosa species, P. laura and P.
View Article and Find Full Text PDFThe six subunit Origin Recognition Complex (ORC) is a DNA replication initiator that also promotes heterochromatinization in some species. A multi-omics study in a human cell line with mutations in three subunits of ORC, reveals that the subunits bind to DNA independent of each other rather than as part of a common six-subunit ORC. While DNA-bound ORC2 was seen to compact chromatin and attract repressive histone marks, the activation of chromatin and protection from repressive marks was seen at a large number of sites.
View Article and Find Full Text PDFUnlabelled: Meiotic chromosome segregation requires reciprocal exchanges between the parental chromosomes (homologs). Exchanges are formed via tightly-regulated repair of double-strand DNA breaks (DSBs). However, since repair intermediates are mostly quantified in fixed images, our understanding of the mechanisms that control the progression of repair remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!