Maize is both phenotypically and genetically diverse. Sequence studies generally confirm the extensive genetic variability in modern maize is consistent with a lack of selection. For more than 6,000 years, Native Americans and modern breeders have exploited the tremendous genetic diversity of maize (Zea mays ssp. mays) to create the highest yielding grain crop in the world. Nonetheless, some loci have relatively low levels of genetic variation, particularly loci that have been the target of artificial selection, like c1 and tb1. However, there is limited information on how selection may affect an agronomically important pathway for any crop. These pathways may retain the signature of artificial selection and may lack genetic variation in contrast to the rest of the genome. To evaluate the impact of selection across an agronomically important pathway, we surveyed nucleotide diversity at six major genes involved in starch metabolism and found unusually low genetic diversity and strong evidence of selection. Low diversity in these critical genes suggests that a paradigm shift may be required for future maize breeding. Rather than relying solely on the diversity within maize or on transgenics, future maize breeding would perhaps benefit from the incorporation of alleles from maize's wild relatives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC130568 | PMC |
http://dx.doi.org/10.1073/pnas.202476999 | DOI Listing |
Nutr Metab (Lond)
January 2025
School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
Background: This study aims to explore the interplay between body mass index (BMI), neutrophils, triglyceride levels, and uric acid (UA). Understanding the causal correlation between UA and health indicators, specifically its association with the body's inflammatory conditions, is crucial for preventing and managing various diseases.
Methods: A retrospective analysis was conducted on 4,286 cases utilizing the Spearman correlation method.
BMC Pediatr
January 2025
Pediatric Internal Medicine, Yantai Yuhuangding Hospital, No.20 Yuhuangding East Road, Zhifu District, Yantai City, Shandong, 264000, China.
Background: Common clinical findings in patients with 19p13.3 duplication include intrauterine growth restriction, intellectual disability, developmental delay, microcephaly, and distinctive facial features. In this study, we report the case of a patient with 19p13.
View Article and Find Full Text PDFBMC Biol
January 2025
National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
Background: The high-frequency induction rate of haploid is crucial for double haploid (DH) breeding. The combination of multiple haploid-induced genes, such as ZmPLA1/MATL/NLD and ZmDMP, can synergistically enhance the haploid induction rate (HIR) in maize. However, the potential synergistic effects between OsMATL and OsDMP genes in rice remain unclear.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Laboratory Medicine, Affiliated Gaozhou People's Hospital, Guangdong Medical University, Maoming, 525200, P.R. China.
Background: DNA hypomethylation and uracil misincorporation into DNA, both of which have a very important correlation with colorectal carcinogenesis. Folate plays a crucial role in DNA synthesis, acting as a coenzyme in one-carbon metabolism, which involves the synthesis of purines, pyrimidines, and methyl groups. MTHFR, a key enzyme in folate metabolism, has been widely studied in relation to neural tube defects and hypertension, but its role in colorectal cancer remains underexplored.
View Article and Find Full Text PDFBMC Genomics
January 2025
Cannabis Innovation and Research Center, Université de Moncton, Moncton, New-Brunswick, Canada.
Background: Due to its previously illicit nature, Cannabis sativa had not fully reaped the benefits of recent innovations in genomics and plant sciences. However, Canada's legalization of C. sativa and products derived from its flower in 2018 triggered significant new demand for robust genotyping tools to assist breeders in meeting consumer demands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!