Virus in Trichomonas--an ultrastructural study.

Parasitol Int

Universidade Santa Ursula, Rua Jornalista Orlando Dantas, 59, Botafogo, 22231-010, Rio de Janeiro, Brazil.

Published: September 2002

Trichomonas vaginalis is a flagellated, parasitic protozoan that inhabits the urogenital tract of humans. Approximately one-half of isolates of T. vaginalis are infected with a double-stranded (ds) RNA virus, which was described in the literature as a homogeneous population of icosahedral virus with isometric symmetry and 33 nm in diameter. The present study describes the heterogeneous virus population found in T. vaginalis isolate 347. This population comprises different virus sizes (33-200 nm) and shape (filamentous, cylindrical, and spherical particles). These observations were made in CsCl-purified virus fractions as well as the thin sections of parasites. Some viruses were only observed after slight changes in the technique where the sample was prepared by the negative staining carbon-film method directly onto freshly cleft mica. The VLPs were found in the cytoplasm closely associated with the Golgi complex, with some VLPs budding from the Golgi, and other VLPs were detected adjacent to the plasma membrane. Unidentified cytoplasmic inclusions were observed in the region close to the VLPs and Golgi. These results indicate that T. vaginalis organisms may be infected with different dsRNA viruses simultaneously and suggest that T. vaginalis may be a reservoir for several viruses. We also showed some steps in the route of T. vaginalis virus and some aspects of the cytopathology of this infection. Purified VLPs were transfected to virus-free T. vaginalis isolates. Our results demonstrate that TVV attach and penetrate into trichomonads through endocytic coated pits and are maintained within vacuoles during batch culture for several daily passages. Immediately after virus transfection, many cells were lysed, whereas some intact reminiscent cells were recruited forming large clusters. Virus particles were found outside the cells, and in coated pits, within vacuoles in the cytoplasm, and infrequently within the nucleus. The Golgi complex showed changes in its electron density and in the cisternae structure. In lysed cells, virus particles were clearly seen over the residual membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1383-5769(02)00016-8DOI Listing

Publication Analysis

Top Keywords

virus
10
golgi complex
8
coated pits
8
virus particles
8
vaginalis
7
vlps
5
virus trichomonas--an
4
trichomonas--an ultrastructural
4
ultrastructural study
4
study trichomonas
4

Similar Publications

Complement-mediated thrombotic microangiopathy (TMA) in the form of atypical hemolytic uremic syndrome (aHUS) has emerged as an immune complication of systemic adeno-associated virus (AAV) gene transfer that was unforeseen based on nonclinical studies. Understanding this phenomenon in the clinical setting has been limited by incomplete data and a lack of uniform diagnostic and reporting criteria. While apparently rare based on available information, AAV-associated TMA/aHUS can pose a substantial risk to patients including one published fatality.

View Article and Find Full Text PDF

In this context, we reported for the first time the design and development of a self-assembled nanoantiviral pesticide based on the star polycation (SPc) and the broad-spectrum fungicide/antiviral agent seboctylamine for field control of (SMV), a highly destructive plant virus in soybean crops. The SPc could self-assemble with seboctylamine through hydrogen bonds and van der Waals forces, and the complexation with SPc reduced the particle size of seboctylamine to form a spherical seboctylamine/SPc complex. In addition, the contact angle of seboctylamine decreased, and its retention increased with the aid of SPc, indicating excellent wetting properties and strong leaf surface adhesion performance.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) is a versatile viral vector technology that can be engineered for specific functionality in vaccine and gene therapy applications. One of the major challenges in AAV production is the need for a GMP-ready platform-based approach to downstream processing, as this would lead to a standardized method for multiple products. Chromatography has huge potential in AAV purification, as it is a scalable method that would enable manufacturing to a high degree of purity, potency, and consistency.

View Article and Find Full Text PDF

Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!