Melanophore melanosomes organelles can be regulated to move and locate correspondingly to many other different organelle types. Comparing lessons from analysis of a specific melanosome distribution can, therefore, contribute to the understanding of distribution of other organelles, and vice versa. From such data, it is now generally accepted that microtubules provide directed long-distance movement, while cell peripheral movements include microfilaments. In fish melanophores, both actin and dynein exhibit counter-forces to the kinesin-like protein in maintaining the evenly dispersed state, while actin and kinesin exhibit counter-forces to dynein in many other systems. Lessons from elevating cAMP levels indicate the presence of a peripheral feedback regulatory system involved in maintaining the evenly dispersed state. Studies from dynein inhibition suggest that the kinesin-like protein involved in fish melanosome dispersal is regulated in contrast to many other systems. One would further expect melanosome transport to be regulated also on actin/myosin, in order to prevent actin-dependent capture of melanosomes during the microtubule-dependent aggregation and dispersion. General findings will be discussed in comparison with positioning and movement of other organelle types in cells. Finally, recent data on melanosome-dependent organising of microtubules show that dynein is involved in nucleating microtubules extending from melanosome aggregates in melanophore fragments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.10164DOI Listing

Publication Analysis

Top Keywords

organelle types
8
exhibit counter-forces
8
kinesin-like protein
8
maintaining evenly
8
evenly dispersed
8
dispersed state
8
melanosome
5
cytoskeleton fish
4
fish melanophore
4
melanophore melanosome
4

Similar Publications

The immune microenvironment related biomarker CCL18 for patients with gout by comprehensive analysis.

Comput Biol Chem

December 2024

Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China. Electronic address:

In the present study, we uncovered and validated potential biomarkers related to gout, characterized by the accumulation of sodium urate crystals in different joint and non-joint structures. The data set GSE160170 was obtained from the GEO database. We conducted differential gene expression analysis, GO enrichment assessment, and KEGG pathway analysis to understand the underlying processes.

View Article and Find Full Text PDF

The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO by CA, following in an increase in carbon flux near Rubisco boosting CO fixation process.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Denali Therapeutics Inc., South San Francisco, CA, USA.

Background: Macrophages and microglia are myeloid cells that play critical roles in the surveillance of the local environment of the tissues in which they reside. The ability of these phagocytes to perform key functions is contingent on their capacity to sense extracellular cues and mount responses that involve chemotaxis, proliferation, cytokine secretion, and phagocytosis of various cargos for lysosomal clearance. Our overarching hypothesis is that lysosomal degradation of phagocytic cargoes is critical for the resolution of cellular/tissue damage, as well as of inflammation, and that failure to accomplish this step affects myeloid cell states and immune responses.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction is an early and prominent feature of Alzheimer's disease (AD). We have recently published that lower brain mitochondrial DNA copy number (mtDNAcn) is associated with increased risk of AD neuropathological change and reduced cognitive performance. Here, we addressed how mtDNAcn affects cell-type specific phenotypes.

View Article and Find Full Text PDF

Background: Alzheimer's (AD) and Parkinson's disease (PD) feature progressive neurodegeneration in a remarkably regionally selective manner. Post mortem studies have posited a role for cell autonomous mechanisms driving this, so we aimed to examine a live human induced pluripotent stem cell (iPSC) model to see whether it can replicate the phenomenon of selective neuronal vulnerability, so to better determine disease mechanisms and therapeutic targets.

Method: iPSC-derived neurons offer a rare opportunity to examine cell autonomous vulnerability in live human cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!