Evaluation of the effects of diuron and its derivatives on Lemna gibba using a fluorescence toxicity index.

Environ Toxicol

Université du Québec à Montréal, Département de Chimie-Biochimie, TOXEN, CP8888, succ Centre-Ville, Canada H3C 3P8.

Published: October 2002

The herbicide diuron (DCMU) [3-(3,4-dichlorophenyl)-1,1-dimethylurea] is largely used in agricultural practices which contribute to water pollution in large areas. Its degradation induced by light or microbial activity is known to be a slow process, and may result in the accumulation of DCMU derivatives in the environment. In this report we used the yield of PSII variable fluorescence of Lemna gibba affected by the DCMU derivatives DCPMU [1-(3,4-dichlorophenyl)-3-methylurea], DCPU [1-(3,4-dichlorophenyl)urea], and DCA [3,4-dichloroaniline] to calculate the fluorescence toxicity index. We found the fluorescence toxicity index to be a useful parameter to evaluate the inhibitory effect on PSII electron transport in L. gibba exposed to DCMU and its derivatives. The variations observed for the inhibitory effect between DCMU and its derivatives seem to be caused by the modification of the dimethylurea group within the DCMU molecule. The fluorescence toxicity index demonstrated a strong quantitative dependency between the inhibitory effect of PSII electron transport and pollutant concentrations. We propose the fluorescence toxicity index to be a useful tool for future bioassays in evaluating the quality of water polluted with herbicides that induce an inhibition to PSII photochemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.10084DOI Listing

Publication Analysis

Top Keywords

fluorescence toxicity
20
dcmu derivatives
16
lemna gibba
8
inhibitory psii
8
psii electron
8
electron transport
8
fluorescence
6
dcmu
6
derivatives
5
toxicity
5

Similar Publications

Genetically encoded calcium (Ca ) indicators (GECIs) are widely used for imaging neuronal activity, yet current limitations of existing red fluorescent GECIs have constrained their applicability. The inherently dim fluorescence and low signal-to-noise ratio of red-shifted GECIs have posed significant challenges. More critically, several red-fluorescent GECIs exhibit photoswitching when exposed to blue light, thereby limiting their applicability in all- optical experimental approaches.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction and damage can result in the release of mitochondrial DNA (mtDNA) into the cytoplasm, which subsequently activates the cGAS-STING pathway, promoting the onset of inflammatory diseases. Various factors, such as oxidative stress, viral infection, and drug toxicity, have been identified as inducers of mitochondrial damage. This study aims to investigate the role of mtDNA as a critical inflammatory mediator in the pathogenesis of ketamine (KET)-induced cystitis (KC) through the cGAS-STING pathway.

View Article and Find Full Text PDF

Background And Objectives: The most widely used method of platelet cryopreservation requires the addition of 5%-6% dimethylsulphoxide (DMSO), followed by its pre-freeze removal via centrifugation, to minimize toxicity. However, this adds complexity to the pre-freeze and post-thaw processing. Accordingly, the aim of this study was to simplify platelet cryopreservation by reducing the DMSO concentration and omitting the requirement for pre-transfusion removal.

View Article and Find Full Text PDF

Introduction: Healthcare systems face several challenges, with microbial infections being one of the main concerns. Therapeutic drug monitoring (TDM) is a strategy that has been encouraged to optimize antimicrobial regimens, particularly those with significant toxicity and narrow therapeutic indices, such as amikacin (AMK). We aimed to evaluate AMK concentrations of patients in a non-routine TDM setting and compare the performance of immunoassay and chromatography methods for routine clinical use.

View Article and Find Full Text PDF

Based on the biologically active heterocycle quinoline, we successfully synthesized a series of quinoline-based dihydrazone derivatives (3a-3d). H NMR, C NMR, ESI-HRMS, IR, element analysis, UV/Vis spectroscopy and fluorescence spectroscopy were performed to comprehensively characterize their chemical structures, spectral properties and stability. Nitrosamine impurities were not detected in 3a-3d, and the systemic toxicological assessment indicated that the toxicity of 3a-3d was lower.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!