A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual isotope test for assessing beta-carotene cleavage to vitamin A in humans. | LitMetric

AI Article Synopsis

  • The study investigates how efficiently beta-carotene converts to vitamin A in the body compared to preformed vitamin A.
  • It involved administering equal doses of beta-carotene and retinyl acetate to a male subject and measuring their concentrations in plasma over an extended period.
  • Results indicated that roughly 8.5 moles of beta-carotene yield the same amount of vitamin A as 1 mole of preformed vitamin A, with an absorption rate of 55% for the beta-carotene dosage.

Article Abstract

Background: The ability of beta-carotene to deliver bioactive retinoids to tissues is highly variable. A clearer understanding of the environmental and genetic factors that modulate the vitamin A potential of beta-carotene is needed.

Aim Of Study: Assess the vitamin A value of orally administered beta-carotene relative to a co-administered reference dose of preformed vitamin A.

Methods: Equimolar doses (30 micromol) of hexadeuterated D6 beta-carotene and D6 retinyl acetate were orally co-administered in an emulsified formulation to a male subject. The plasma concentration time courses of D6 retinol (derived from D6 retinyl acetate) and bioderived D3 retinol (from D(6) beta-carotene) were determined for 554 h postdosing using gas chromatography/mass spectrometry. Intact D6 beta-carotene plasma concentrations were determined by high-pressure liquid chromatography. The ratio of the two forms of vitamin A, D6 retinol/D3 retinol, at any single time point is postulated to reflect the quantity of vitamin A derived from beta-carotene relative to preformed vitamin A. Additionally, a minute amount of 14C beta-carotene (50 nCi; 0.27 microg) was included in the oral dose and cumulative 24-h stool and urine samples were collected for two weeks to follow absorption and excretion of the b-carotene. The 14C nuclide was detected using accelerator mass spectrometry (AMS). Results During the absorption/distribution phase (3-11 h) the D6/D3 ratio of the two retinols was not stable and ranged between a value of 3 and 16. Between 11 and 98 h postdosing the ratio was relatively stable with a mean value of 8.5 (95 % CI: 7.5, 8.7). These data suggest that in this subject and under these conditions, 8.5 moles of beta-carotene would provide a vitamin A quantity equivalent to 1 mole of preformed vitamin A. On a mass basis, 15.9 microg of beta-carotene was equivalent to 1 microg of retinol. The total administered beta-carotene was found to be 55 % absorbed by AMS analysis of cumulative stool.

Conclusion: The co-administration of D6 beta-carotene and D6 retinyl acetate provides a technique for assessing individual ability to process beta-carotene to vitamin A. The results indicate that a single time point taken between 11-98 h after dose administration may provide a reliable value for the relative ratio of the two forms of vitamin A. However, results from more subjects are needed to assess the general utility of this method.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00394-002-0368-0DOI Listing

Publication Analysis

Top Keywords

beta-carotene
14
preformed vitamin
12
retinyl acetate
12
vitamin
11
administered beta-carotene
8
beta-carotene relative
8
beta-carotene retinyl
8
ratio forms
8
forms vitamin
8
single time
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!