mi-er1 (previously called er1) is a fibroblast growth factor-inducible early response gene activated during mesoderm induction in Xenopus embryos and encoding a nuclear protein that functions as a transcriptional activator. The human orthologue of mi-er1 was shown to be upregulated in breast carcinoma cell lines and breast tumours when compared to normal breast cells. In this report, we investigate the structure of the human mi-er1 (hmi-er1) gene and characterize the alternatively spliced transcripts and protein isoforms. hmi-er1 is a single copy gene located at 1p31.2 and spanning 63 kb. It contains 17 exons and includes one skipped exon, a facultative intron and three polyadenylation signals to produce 12 transcripts encoding six distinct proteins. hmi-er1 transcripts were expressed at very low levels in most human adult tissues and the mRNA isoform pattern varied with the tissue. The 12 transcripts encode proteins containing a common internal sequence with variable N- and C-termini. Three distinct N- and two distinct C-termini were identified, giving rise to six protein isoforms. The two C-termini differ significantly in size and sequence and arise from alternate use of a facultative intron to produce hMI-ER1alpha and hMI-ER1beta. In all tissues except testis, transcripts encoding the beta isoform were predominant. hMI-ER1alpha lacks the predicted nuclear localization signal and transfection assays revealed that, unlike hMI-ER1beta, it is not a nuclear protein, but remains in the cytoplasm. Our results demonstrate that alternate use of a facultative intron regulates the subcellular localization of hMI-ER1 proteins and this may have important implications for hMI-ER1 function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-1119(02)00823-5 | DOI Listing |
BMC Genomics
May 2023
Department of Biology, Illinois Institute of Technology, Chicago, IL, USA.
Background: Microsporidia are diverse spore forming, fungal-related obligate intracellular pathogens infecting a wide range of hosts. This diversity is reflected at the genome level with sizes varying by an order of magnitude, ranging from less than 3 Mb in Encephalitozoon species (the smallest known in eukaryotes) to more than 50 Mb in Edhazardia spp. As a paradigm of genome reduction in eukaryotes, the small Encephalitozoon genomes have attracted much attention with investigations revealing gene dense, repeat- and intron-poor genomes characterized by a thorough pruning of molecular functions no longer relevant to their obligate intracellular lifestyle.
View Article and Find Full Text PDFSci Rep
July 2022
Departamento de Genética del Desarrollo Y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62250, México.
Transcription factors (TFs) activate gene expression by binding to elements close to promoters or enhancers. Some TFs can bind to heterochromatic regions to initiate gene activation, suggesting that if a TF is able to bind to any type of heterochromatin, it can activate transcription. To investigate this possibility, we used the CRISPRa system based on dCas9-VPR as an artificial TF in Drosophila.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2021
Istituto di Biochimica e Biologia Cellulare, Campus Internazionale "A. Buzzati-Traverso", Dipartimento Scienze Biomediche, Consiglio Nazionale delle Ricerche, via Ramarini 32, 00015 Monterotondo, Rome, Italy.
We have characterized a homodimeric tRNA endonuclease from the euryarchaeota (FERAC), a facultative anaerobe which can grow at temperatures ranging from 35 to 42 °C. This enzyme, contrary to the eukaryal tRNA endonucleases and the homotetrameric (METJA) homologs, is able to cleave minimal BHB (bulge-helix-bulge) substrates at 30 °C. The expression of this enzyme in (SCHPO) enables the use of its properties as effectors by inserting BHB motif introns into hairpin loops normally seen in mRNA transcripts.
View Article and Find Full Text PDFSci Rep
June 2021
Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic.
Euglenids represent a group of protists with diverse modes of feeding. To date, only a partial genomic sequence of Euglena gracilis and transcriptomes of several phototrophic and secondarily osmotrophic species are available, while primarily heterotrophic euglenids are seriously undersampled. In this work, we begin to fill this gap by presenting genomic and transcriptomic drafts of a primary osmotroph, Rhabdomonas costata.
View Article and Find Full Text PDFPLoS Negl Trop Dis
November 2020
Program in Cellular, Molecular & Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!