We investigate the complexation behavior between a semiflexible charged polymer and an oppositely charged sphere with parameters appropriate for the DNA-histone system. We determine the ground state of a simple free energy expression (which includes electrostatic interactions on a linear level) numerically and use symmetry arguments to divide the obtained DNA configuration into broad classes, thereby obtaining global phase diagrams. We pay specific attention to the effects of salt concentration, DNA length variation, DNA charge renormalization, and externally applied force on the obtained complex structures.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.66.011918DOI Listing

Publication Analysis

Top Keywords

complexes semiflexible
4
semiflexible polyelectrolytes
4
polyelectrolytes charged
4
charged spheres
4
spheres models
4
models salt-modulated
4
salt-modulated nucleosomal
4
nucleosomal structures
4
structures investigate
4
investigate complexation
4

Similar Publications

Microrheology has become an indispensable tool for measuring the dynamics of macromolecular systems. Yet, its ability to characterize polymer dynamics across spatiotemporal scales, which vary among polymers and concentration regimes, is limited by the selection of probe morphologies and sizes. Here, we introduce semiflexible M13 phage as a powerful microrheological probe able to circumvent these constraints to robustly capture the dynamics of polymeric solutions across decades of concentrations, sizes, and ionic conditions.

View Article and Find Full Text PDF

Conformational switches in human RNA binding proteins involved in neurodegeneration.

Biochim Biophys Acta Gen Subj

January 2025

Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Bioinformatics Centre, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. Electronic address:

Conformational switching in RNA binding proteins (RBPs) is crucial for regulation of RNA processing and transport. Dysregulation or mutations in RBPs and broad RNA processing abnormalities are related to many human diseases including neurodegenerative disorders. Here, we review the role of protein-RNA conformational switches in RBP-RNA complexes.

View Article and Find Full Text PDF

Dependencies between effective parameters in coarse-grained models for phase separation of DNA-based fluids.

J Chem Phys

December 2024

Institute for Theoretical Physics IV, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany.

Article Synopsis
  • DNA is a powerful tool for creating synthetic nanostructures, and while single molecules can be engineered to fold into complex shapes, less is known about the behavior of larger DNA assemblies in solution.
  • Recent research explores how single-stranded DNA fluids can separate into dense and dilute phases, which could lead to new types of hierarchical structures.
  • A simplified model has been developed to understand single-polymer behavior and phase separation, but challenges remain in accurately simulating interactions, particularly the role of counterions in affecting electrostatic attractions.
View Article and Find Full Text PDF

A discretized representation for Monte Carlo simulation of deformed semiflexible chains.

J Chem Phys

December 2024

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

In this study, we present a novel orientation discretization approach based on the rhombic triacontahedron for Monte Carlo simulations of semiflexible polymer chains, aiming at enhancing structural analysis through rheo-small-angle scattering (rheo-SAS). Our approach provides a more accurate representation of the geometric features of semiflexible chains under deformation, surpassing the capabilities of traditional lattice structures. Validation against the Kratky-Porod chain system demonstrated superior consistency, underscoring its potential to significantly improve the precision of uncovering geometric details from rheo-SAS data.

View Article and Find Full Text PDF

Elucidating the influence of side chains on the self-assembly of semi-flexible mesogens.

Chem Commun (Camb)

December 2024

Institut de Sciences des Matériaux de Mulhouse, CNRS UMR 7361, 15 rue Jean Starcky, 68057 Mulhouse, France.

In the development of functional materials, side chains are traditionally incorporated into the primary chemical structure to induce liquid-crystalline behavior or to enhance solubility for improved processability. However, emerging evidence suggests that side chains play a far more complex role. This study presents a case of a double helical supramolecular structure formed by star-shaped mesogens in the absence of specific interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!