The concentration dependence of the structure of fibrin gels, formed following fibrinogen activation by thrombin at a constant molar ratio, was investigated by means of elastic light scattering techniques. The scattered intensity distributions were measured in absolute units over a wave-vector range q of about three decades ( approximately 3x10(2)-3x10(5) cm(-1)). A set of gel-characterizing parameters were recovered by accurately fitting the data with a single function recently developed by us [F. Ferri et al., Phys. Rev. E 63, 031401 (2001)], based on a simple structural model. Accordingly, the gels can be described as random networks of fibers of average diameter d and density rho, entangled together to form densely packed and spatially correlated blobs of mass fractal dimension D(m) and average size (or crossover length) xi. As previously done for d, we show here that the recovered xi is also a good approximation of a weight average, namely, d approximately sqrt[(w)] and xi approximately (w). By varying the fibrinogen concentration c(F) between 0.034-0.81 mg/ml, gels with 100> or =xi> or =10 microm, 100< or =d< or =200 nm, 1.2< or =D(m)< or =1.4, and constant rho approximately 0.4 mg/ml were obtained. The power-law c(F) dependencies that we found for both xi and d are consistent with the model, provided that the blobs are allowed to partially overlap by a factor eta likewise scaling with c(F) (2> or =eta> or =1). Recasting the whole dataset on a single master curve provided further evidence of the similarity between the structures of all the gels, and confirmed the self-consistency of the model.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.66.011913DOI Listing

Publication Analysis

Top Keywords

structure fibrin
8
fibrin gels
8
elastic light
8
light scattering
8
scattering techniques
8
fractal dimension
8
crossover length
8
gels
5
gels studied
4
studied elastic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!