We present detailed spectroscopic analysis of the primary K-shell emission lines from a uniaxially expanding laser-produced hydrogenic and heliumlike aluminum plasma. The spectroscopic measurements are found to be consistent with time-dependent hydrodynamic properties of the plasma, measured using Thomson scattering and shadowgraphy. The K-shell population kinetics code FLY with the measured hydrodynamic parameters is used to generate spectra that are compared to the experimental spectra. Excellent agreement is found between the measured and calculated spectra for a variety of experimental target widths employed to produce plasmas with different optical depths. The peak emission from the hydrogenic Lyman series is determined to be from a temporal and spatial region where the hydrodynamic parameters are essentially constant. This allows a single steady-state solution of FLY to be used to deduce the electron temperature and density, from the measured line ratios and linewidths, for comparison with the Thomson and shadowgraphy data. These measurements are found to agree well with time-dependent calculations, and provide further validation for the FLY calculations of the ionization and excitation balance for a K-shell aluminum plasma. We also discuss the possible application of this data as a benchmark for hydrodynamic simulations and ionization/excitation balance calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.66.026410DOI Listing

Publication Analysis

Top Keywords

aluminum plasma
12
uniaxially expanding
8
expanding laser-produced
8
hydrodynamic parameters
8
k-shell
4
k-shell spectroscopy
4
spectroscopy independently
4
independently diagnosed
4
diagnosed uniaxially
4
laser-produced aluminum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!