Coherence enhancement in nonlinear systems subject to multiplicative Ornstein-Uhlenbeck noise.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Neurology, MC-2030, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA.

Published: August 2002

We show that for two biologically relevant models with self-sustained oscillations under the action of a multiplicative Ornstein-Uhlenbeck process, their coherence response behaves nonmonotonically with the process correlation time. There is a correlation time for which the quality factor is optimized. This phenomenon is a consequence of the interplay between the correlation time and the system's periodicity. This relation is evidenced through a power law relation with an exponent close to -1 / 2.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.66.022101DOI Listing

Publication Analysis

Top Keywords

correlation time
12
multiplicative ornstein-uhlenbeck
8
coherence enhancement
4
enhancement nonlinear
4
nonlinear systems
4
systems subject
4
subject multiplicative
4
ornstein-uhlenbeck noise
4
noise biologically
4
biologically relevant
4

Similar Publications

Background: When coronavirus disease 2019 (COVID-19) mitigation efforts waned, viral respiratory infections (VRIs) surged, potentially increasing the risk of postviral invasive bacterial infections (IBIs). We sought to evaluate the change in epidemiology and relationships between specific VRIs and IBIs [complicated pneumonia, complicated sinusitis and invasive group A streptococcus (iGAS)] over time using the National COVID Cohort Collaborative (N3C) dataset.

Methods: We performed a secondary analysis of all prospectively collected pediatric (<19 years old) and adult encounters at 58 N3C institutions, stratified by era: pre-pandemic (January 1, 2018, to February 28, 2020) versus pandemic (March 1, 2020, to June 1, 2023).

View Article and Find Full Text PDF

In this study, the relationship between plasma ghrelin levels and muscle atrophy was examined in an experimental diabetic rat model. 56 male Wistar albino rats, aged 8-10 weeks, were used in the study. The rats were divided into 8 groupsD1: one-week diabetes, C1: one-week control, D2: three-week diabetes, C2: three-week control, D3: six-week diabetes, C3: six-week control, D4: eight-week diabetes, C4: eight-week control.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) are fluorescent materials that have been developed as sensors for measuring the activities of enzymes. However, most sensors to date rely on end-point measurement and empirical functions to correlate enzyme concentrations with fluorescence responses. Less emphasis is put on analyzing time-dependent fluorescence responses and their connections with enzymatic kinetics.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is the most common cardiac arrhythmia. Given its often-paroxysmal nature, screening at a single time point, using a 12-lead electrocardiogram (ECG) or a Holter monitor, has limited benefit. The AliveCor KardiaMobile device is a validated ECG recorder that can be used for patient-directed arrhythmia diagnosis and symptom-rhythm correlation.

View Article and Find Full Text PDF

Objective: A comprehensive bioinformatics analysis was conducted to investigate potential new diagnostic biomarkers and immune infiltration characteristics associated with tubulointerstitial injury in lupus nephritis (LN), and to examine possible correlations between key genes and infiltrating immune cells.

Methods: The GSE32591, GSE113342, and GSE200306 datasets were downloaded from the Gene Expression Omnibus database and differentially expressed genes (DEGs) were identified in the pooled dataset. Support vector machine-recursive feature elimination analysis and the least absolute shrinkage and selection operator regression model were used to screen for possible markers, and the compositional patterns of the 22 types of immune cell fractions in LN were determined using CIBERSORT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!