Carbon flux analysis in a pantothenate overproducing Corynebacterium glutamicum strain.

Mol Biol Rep

Laboratoire Biotechnologie-Bioprocédés, UMR INSA/CNRS N5504 & UMR INSA/INRA 792, Centre de Bioingénierie Gilbert Durand, Institut National de Sciences Appliquées, Toulouse, France.

Published: July 2003

Carbon flux analysis during a pseudo-stationary phase of metabolite accumulation in a genetically engineered strain of Corynebacterium glutamicum, containing plasmids leading to over-expression of the ilvBNCD and panBC operons, has identified the basic metabolic constraints governing the potential of this bacterium to produce pantothenate. Carbon flux converging on pyruvate (75% of glucose uptake) is controlled by anabolic precursor requirements and NADPH demand provoking high carbon loss as CO2 via the pentose pathway. Virtually all the flux of pyruvate is directed into the branched pathway leading to both valine and pantothenate production, but flux towards valine is tenfold higher than that transformed to pantothenate, indicating that significant improvements will only be obtained if carbon flux at the ketoisovalerate branchpoint can be modulated.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1020353124066DOI Listing

Publication Analysis

Top Keywords

carbon flux
16
flux analysis
8
corynebacterium glutamicum
8
carbon
5
flux
5
pantothenate
4
analysis pantothenate
4
pantothenate overproducing
4
overproducing corynebacterium
4
glutamicum strain
4

Similar Publications

A novel air-to-liquid mass transfer system using wetted rotating membranes was designed to enhance air-to-liquid carbon dioxide (CO) mass transfer efficiency. Traditional methods, such as sparging, are energy-intensive, but the rotating membrane reduces energy demands by optimising membrane wetting via rotational motion. Experimental tests were conducted using a small-scale system with a membrane width of 0.

View Article and Find Full Text PDF

Investigation of potential cytotoxicity of a water-soluble, red-fluorescent [70]fullerene nanomaterial in .

Nanotoxicology

December 2024

Department of Systems Engineering and Biology, Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland.

Fullerenes (C, C) as carbon nanomaterials can enter the environment through natural processes and anthropogenic activities, while synthetic fullerenes are commonly used in medicine in targeted therapies in association with antibodies, or anticancer and antimicrobial drugs. As the nanoparticles, they can pass through cell membranes and organelles and accumulate in the entire cytoplasm. The red-fluorescent, water-soluble [70]fullerene derivative C-OMe-ser, which produces reactive oxygen species upon illumination with an appropriate wavelength, passed into the cytoplasm of the middle region in the digestive system.

View Article and Find Full Text PDF

Process-based quantitative description of carbon biogeochemical cycle in a reclaimed water intake area.

Environ Res

December 2024

State Key Laboratory of Nuclear Resources and Environment, Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China.

Reclaimed water plays a pivotal role in addressing water scarcity and pollution. The carbon (C) cycle significantly impacts aquatic ecosystems and water quality, yet the C biogeochemical cycle in nutrient-rich reclaimed water remains enigmatic. This study focuses on reclaimed water, developing a conceptual biogeochemical mass balance model to examine C cycling and assess the C budget in the highly eutrophic Jian and Chaobai rivers.

View Article and Find Full Text PDF

Carbon sinks associated with biological carbon pump in karst surface waters: progress, challenges, and prospects.

Environ Res

December 2024

Xi'an Institute for Innovative Earth Environment Research, Institute of Earth Environment Chinese Academy of Sciences, Xi'an 710061, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China.

The biological carbon pump (BCP) associated with aquatic photosynthesis in karst surface waters converts dissolved inorganic carbon (DIC) into organic carbon. In the context of global climate change, BCP could be an important carbon sink mechanism, ultimately regulating atmospheric carbon dioxide (CO) and mitigating climate change. Because of the high DIC and pH, and low dissolved CO [CO (aq)], the hydrochemical characteristics of karst surface water bodies cause C limitation in BCP efficiency.

View Article and Find Full Text PDF

A new type of two-dimensional carbon-based monolayers namely irida-graphene as an anode material for magnesium-ion batteries.

J Mol Graph Model

December 2024

Department of computer Engineering, College of Computer Science, King Khalid University, Main Campus, Al farah Abha, 61421, Kingdom of Saudi Arabia.

The DFT was employed to assess the ion-storage capability of an irida-graphene monolayer (IGM) in Mg-ion batteries (MIBs). The IGM had a mechanically stable structure. The IGM also exhibited great conductance based on the DOS calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!