ICF syndrome is a rare autosomal recessive disorder characterized by immunodeficiency, centromeric instability, and facial anomalies. It is caused by mutations in a de novo DNA methyltransferase gene, DNMT3B. We here report the first three Japanese cases of ICF syndrome from two unrelated families. All patients had typical facial dysmorphism and immunoglobulin A (IgA) deficiency, but none of them had apparent mental retardation. Cytogenetic analysis of peripheral blood lymphocytes showed chromosomal abnormalities, including multiradial configurations and a stretching of the pericentromeric heterochromatin of chromosomes 1 and 16. Hypomethylation of classical satellite 2 DNA was also observed. Mutation analyses of DNMT3B revealed three novel mutations: patient 1 from the first family was a compound heterozygote for a nonsense mutation (Q42Term) and a missense mutation (R832Q); patients 2 and 3 from the second family were both homozygous for a missense mutation (S282P). The R832Q mutation occurred within the conserved methyltransferase domain, and thus may affect the enzyme activity directly. The S282P mutation, on the other hand, occurred close to the PWWP domain, which is presumably involved in protein-protein interaction. This is the first missense mutation mapped to the N-terminal half of the protein, suggesting that the region plays an important role in the regulation of the DNMT3B enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.10658 | DOI Listing |
J Investig Allergol Clin Immunol
November 2024
Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan.
Hum Mol Genet
November 2024
UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université de Paris Cité, Epigenetics and Cell Fate, Lamarck building, 35 rue Hélène Brion, Paris F-75013, France.
Since its discovery as a causative gene of the Immunodeficiency with Centromeric instability and Facial anomalies syndrome, ZBTB24 has emerged as a key player in DNA methylation, immunity and development. By extensively analyzing ZBTB24 genomic functions in ICF-relevant mouse and human cellular models, we document here its multiple facets as a transcription factor, with key roles in immune response-related genes expression and also in early embryonic development. Using a constitutive Zbtb24 ICF-like mutant and an auxin-inducible degron system in mouse embryonic stem cells, we showed that ZBTB24 is recruited to centromeric satellite DNA where it is required to establish and maintain the correct DNA methylation patterns through the recruitment of DNMT3B.
View Article and Find Full Text PDFFront Immunol
October 2024
Key Laboratory of Drug Targeting and Drug Delivery of Ministry of Education (MOE), Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, West China School of Pharmacy, Sichuan University, Chengdu, China.
J Clin Immunol
September 2024
Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey.
Hum Immunol
November 2024
Department of Allergy, Asthma and Inflammation, 1st Pediatric Clinic University of Athens, Childrens' Hospital 'Agia Sophia', Athens, Greece. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!