Our objectives were to determine whether heme oxygenase-1 is a second messenger for prolactin-mediated angiogenesis. Endothelial cell proliferation and angiogenesis assay demonstrated that cell number and capillary formation were increased by prolactin (10 and 25 ng/ml). Both protein synthesis and mRNA analysis confirmed that HO-1 expression was induced by prolactin in cultured endothelial cells and occurred in a concentration-dependent manner. Endothelial cells transduced with retrovirus-mediated delivery of HO-1 gene in sense and antisense orientation were used to further determine whether HO-1 overexpression or underexpression modulated prolactin-mediated endothelial cell proliferation and angiogenesis. Incubation of human microvessel endothelial cells transduced with HO-1 in sense orientation resulted in enhancement of prolactin-mediated increase in endothelial cell proliferation and angiogenesis, whereas inhibition of HO-1 by transduction of HO-1 in antisense orientation prevented prolactin increase in endothelial cell proliferation. Similarly, addition of stannic mesoporphyrin, the inhibitor of HO activity, prevented PRL-mediated increase in endothelial cell proliferation. Our results demonstrated for the first time, that prolactin-mediated angiogenesis and cell proliferation was dependent on HO-1 gene expression.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell proliferation
28
endothelial cell
20
proliferation angiogenesis
16
endothelial cells
16
increase endothelial
12
endothelial
9
cell
8
prolactin-mediated angiogenesis
8
cells transduced
8
ho-1 gene
8

Similar Publications

Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.

View Article and Find Full Text PDF

The Effects of Nitric Oxide on Choroidal Gene Expression.

J Bioinform Syst Biol

January 2024

Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States.

Purpose: Nitric oxide (NO) is recognized as an important biological mediator that controls several physiological functions, and evidence is now emerging that this molecule may play a significant role in the postnatal control of ocular growth and myopia development. We therefore sought to understand the role that nitric oxide plays in visually-guided ocular growth in order to gain insight into the underlying mechanisms of this process.

Methods: Choroids were incubated in organ culture in the presence of the NO donor, PAPA- NONOate (1.

View Article and Find Full Text PDF

Background: The Arp2/3 complex is a key regulator of tumor metastasis, and targeting its subunits offers potential for anti-metastatic therapy. However, the expression profiles, prognostic relevance, and diagnostic value of its subunits across cancers remain poorly understood. This study aims to investigate the clinical relevance of Arp2/3 complex subunits, particularly ARPC1A, in pan-cancer, and to further analyze the potential biological mechanisms of ARPC1A, as well as its association with immune infiltration and chemotherapy drug sensitivity.

View Article and Find Full Text PDF

Introduction: Breast cancer (BC) is the most prevalent malignant tumor in women, with triple-negative breast cancer (TNBC) showing the poorest prognosis among all subtypes. Glycosylation is increasingly recognized as a critical biomarker in the tumor microenvironment, particularly in BC. However, the glycosylation-related genes associated with TNBC have not yet been defined.

View Article and Find Full Text PDF

Introduction: Macrophages exhibit marked phenotypic heterogeneity within and across disease states, with lipid metabolic reprogramming contributing to macrophage activation and heterogeneity. Chronic inflammation has been observed in human benign prostatic hyperplasia (BPH) tissues, however macrophage activation states and their contributions to this hyperplastic disease have not been defined. We postulated that a shift in macrophage phenotypes with increasing prostate size could involve metabolic alterations resulting in prostatic epithelial or stromal hyperplasia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!