The aim of this prospective study was to examine skin reactivity to four vasomotor agents and to determine whether non-eosinophilic rhinitis patients differ from patients with eosinophilic rhinitis. Nasal cytology enabled us to classify 74 rhinitis patients into a non-eosinophilic (n = 63) and an eosinophilic group (n = 11). Skin reactivity to intradermal tests with papaverine, metacholine, histamine and compound 48/80 was measured. No significant difference for papaverine, metacholine, histamine and compound 48/80, singly, was found between the non-eosinophilic and eosinophilic group. The frequency of the total pathological skin reactivity to vasomotor agents, singly and in combinations, was greater in the eosinophilic (91 per cent) then in the non-eosinophilic group (78 per cent) but intergroup difference was not significant. These findings suggest that pathologic skin reactivity to vasomotor agents is a feature of non-eosinophilic as well as eosinophilic non-allergic rhinitis patients and indicate that no difference is noticed in the skin reactivity between these groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1258/002221502760132386 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.
Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).
J Biol Chem
January 2025
Departments of Neurology, University of Michigan, Ann Arbor, MI 48109; Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109; Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI 48105. Electronic address:
Stereotyped mutations in NOTCH3 drive CADASIL, the leading inherited cause of stroke and vascular dementia. The vast majority of these mutations result in alterations in the number of cysteines in the gene product. However, non-cysteine altering pathogenic mutations have also been identified, making it challenging to discriminate pathogenic from benign NOTCH3 sequence variants.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India. Electronic address:
Deep cutaneous wounds, which are difficult to heal and specifically occur on dynamic body surfaces, remain a substantial healthcare challenge in clinical practice because of multiple underlying factors, including excessive reactive oxygen species, potential bacterial infection, and extensive degradation of the extracellular matrix (ECM) which further leads to the progressive deterioration of the wound microenvironment. Any available individual wound therapy, such as antibiotic-loaded cotton gauze, cannot address all these issues. Engineering an advanced multifunctional wound dressing is the current need to promote the overall healing process of such wounds.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
Melanoma is the most aggressive type of skin cancers. Traditional chemotherapy and radiotherapy have limited effectiveness and can lead to systemic side effects. Photodynamic therapy (PDT) is a photoresponsive cancer therapy based on photosensitizers to generate reactive oxygen species (ROS) to eradicate tumor cells.
View Article and Find Full Text PDFPharmaceutics
December 2024
School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand.
Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, its instability and limited penetration through the stratum corneum hinder its topical application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!