Cyclic GMP (cGMP) mediates smooth muscle relaxation in the central nervous system. In subarachnoid hemorrhage (SAH), decreases in intrinsic nitric oxide (NO) cause cerebral vasospasms due to the regulation of cGMP formation by NO-mediated pathways. As phosphodiesterase type V (PDE V) selectively hydrolyzes cGMP, we hypothesized that PDE V may function in the initiation of vasospasm. This study sought to identify the altered PDE V expression and activity in the vasospastic artery in a canine SAH model. We also used this system to examine possible therapeutic strategies to prevent vasospasm. Using a canine model of SAH, we induced cerebral vasospasm in the basilar artery (BA). Following angiographic confirmation of vasospasm on day 7, PDE V expression was immunohistochemically identified in smooth muscle cells of the vasospastic BA but not in cells of a control artery. The isolation of PDE enzymes using a sepharose column confirmed increased PDE V activity in the vasospastic artery only through both inhibition studies, using the highly selective PDE V inhibitor, sildenafil citrate, and Western blotting. Preliminary in vivo experiment using an oral PDE V inhibitor at 0.83 mg kg(-1) demonstrated partial relaxation of the spastic BA. PDE V activity was increased from control levels within the BA seven days after SAH. PDE V expression was most prominent in smooth muscle cells following SAH. These results suggest that clinical administration of a PDE V inhibitor may be a useful therapeutic tool in the prevention of vasospasm following SAH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1179/016164102101200447 | DOI Listing |
Cardiovasc Res
December 2024
Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
Aim: Microcalcification increases the vulnerability of plaques and has become an important driver of acute cardiovascular events in diabetic patients. However, the regulatory mechanisms remain unclear. DJ-1, a multifunctional protein, may play a potential role in the development of diabetic complications.
View Article and Find Full Text PDFRev Esp Enferm Dig
January 2025
Cirugía General, Complejo Hospitalario Universitario de Cartagena.
The gastrointestinal leiomyosarcoma is a rare tumor of the colon that arises from the smooth muscle cells of the intestinal wall. It is a very aggressive tumor with a poor prognosis.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
Background: Cardiovascular disease (CVD) is among the strongest modifiable risk factors for dementia. However, vascular health is multifaceted, and its neurobiological underpinnings are unclear. A recent study (Williams et al.
View Article and Find Full Text PDFPathol Int
January 2025
Department of Surgical Pathology, Kagoshima University Hospital, Kagoshima, Japan.
A male in his seventies presented with lung cancer in the right lower lobe. The surgically resected specimen revealed a pleomorphic carcinoma featuring an adenocarcinoma component with lepidic, acinar, and papillary patterns, alongside a spindle cell component spreading along the pulmonary artery wall, resembling intimal sarcoma. The spindle tumor cells were positive for keratins, TTF-1, napsin A, and vimentin, but negative for p40, CK14, desmin, alpha-smooth muscle actin, CDK4, and MDM2.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
Background: Hyperuricemia (HUA) is a condition characterized by excessive uric acid production and/or inadequate uric acid excretion due to abnormal purine metabolism in the human body. Uric acid deposits resulting from HUA can lead to complications such as renal damage. Currently, drugs used to treat HUA lack specificity and often come with specific toxic side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!