Expression of the atpE Gene Coding for the epsilon Subunit of Maize Chloroplast Coupling Factor.

Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)

Shanghai Institute of Plant Physiology, Academia Sinica, Shanghai 200032, China.

Published: January 1996

The entire atpE gene of the maize chloroplast coupling factor was inserted into the polylinker region of vectors pJLA505 and pWA to form recombinant plasmids pJLA505-atpE and pWA-atpE respectively. These expression plasmids were transformed into E. coli NM522 which induced at 42 degrees. By the analysis of SDS-PAGE, the expressed product of interest was observed to account fore more than 3o% of total E. coliproteins. The identification of the expressed product demonstrated that its immunological specificity was well retained. The antiserum cross-reacted with the expressed epsilon protein and CF(1)-epsilon protein of spinach and produced precipitin lines on Ouchterlony immunodiffusion test. The expressed product aggregated insolubly as the inclusion body and was purified to over 80% purity. The purified product had the same function as that of the native epsilon subunit.

Download full-text PDF

Source

Publication Analysis

Top Keywords

expressed product
12
atpe gene
8
epsilon subunit
8
maize chloroplast
8
chloroplast coupling
8
coupling factor
8
expression atpe
4
gene coding
4
coding epsilon
4
subunit maize
4

Similar Publications

Identification and characterization of a novel QTL for barley yellow mosaic disease resistance from bulbous barley.

Plant Genome

March 2025

Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.

Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.

View Article and Find Full Text PDF

Regulation of protein production in response to physiological signals is achieved through precise control of Eukaryotic Elongation Factor 2 (eEF2), whose distinct translocase function is crucial for cell survival. Phosphorylation of eEF2 at its Thr56 (T56) residue inactivates this function in translation. Using genetically modified paralogue of a colon cancer cell line, HCT116 which carries a point mutation at Ser595-to-Alanine in the eEF2 gene we were able to create a constitutively active form of eEF2.

View Article and Find Full Text PDF

Poor oral health is an independent risk factor for upper-aerodigestive tract cancers, including esophageal squamous cell carcinoma (ESCC); thus, good oral health may reduce the risk of ESCC. We previously reported that high expression of Toll-like receptor (TLR) 6, which recognizes peptidoglycan (PGN) from Gram-positive bacteria correlates with a good prognosis after esophagectomy for ESCC. Most beneficial bacteria in the mouth are Gram-positive.

View Article and Find Full Text PDF

MaGA20ox2f, an OsSD1 homolog, regulates flowering time and fruit yield in banana.

Mol Breed

January 2025

Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China.

Unlabelled: Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, and , are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', ) in the banana genome. The expression of is confined to leaves, peduncles, fruit peels, and pulp.

View Article and Find Full Text PDF

G-quadruplexes (G4s) are four-stranded alternative secondary structures formed by guanine-rich nucleic acids and are prevalent across the human genome. G4s are enzymatically resolved using specialized helicases. Previous studies showed that DEAH-box Helicase 36 (DHX36/G4R1/RHAU), has the highest specificity and affinity for G4 structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!