The NarL response regulatory protein of Escherichia coli has been engineered by covalent modification with 1,10-phenanthroline (OP) to create a set of site-specific DNA-cleaving agents. This was accomplished by introducing single cysteine amino acid replacements at selected locations within the carboxy-terminal DNA-binding domain in or nearby the helix 8 to helix 9 region of the NarL protein using site-directed mutagenesis. Of 18 modified NarL-OP proteins made, 13 retained the ability to bind DNA as evidenced by gel mobility assays, whereas 10 of the 1,10-phenanthroline-modified proteins also exhibited specific cleavage activity for a synthetic NarL recognition sequence. These DNA-cleaving agents were divided into two groups based on the location of the cleavage sites. The first class set cleaved the DNA nearby the center of a synthetic 7-2-7 sequence composed of two NarL heptamer sites separated by a 2-bp spacer element. The second class cut the DNA at the periphery of the 7-2-7 sequence. The cleavage data are consistent with the ability of two NarL monomers to recognize and bind to the DNA in a head-to-head orientation. A second set of DNA-cleaving agents was constructed using the carboxy-terminal domain of NarL called NarL(C). Similar cleavage patterns were observed whether full-length NarL or NarL(C) was used. The availability of 1,10-phenanthroline-modified NarL and NarL(C) proteins opens up the possibility to explore the position, orientation, and number of NarL recognition sites at E. coli promoters predicted to contain multiple and complex arrangements of NarL-binding sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373700PMC
http://dx.doi.org/10.1110/ps.0212502DOI Listing

Publication Analysis

Top Keywords

dna-cleaving agents
12
narl
11
synthetic narl
8
escherichia coli
8
bind dna
8
narl recognition
8
7-2-7 sequence
8
narl narlc
8
cleavage
5
sites
5

Similar Publications

Background: Fibrin, von Willebrand factor, and extracellular DNA from neutrophil extracellular traps all contribute to acute ischemic stroke thrombus integrity.

Objectives: In this study, we explored how the proteomic composition of retrieved thromboemboli relates to susceptibility to lysis with distinct thrombolytics.

Methods: Twenty-six retrieved stroke thromboemboli were portioned into 4 segments, with each subjected to 1 hour of in vitro lysis at 37 °C in 1 of 4 solutions: tissue plasminogen activator (tPA), tPA + von Willebrand factor-cleaving ADAMTS-13, tPA + DNA-cleaving deoxyribonuclease (DNase) I, and all 3 enzymes.

View Article and Find Full Text PDF

Search for new antimicrobial agents is of great significance due to the issue of antimicrobial resistance, which nowadays has become more important than many diseases. The aim of this study was to evaluate the toxicity and biological effects of a dextran-graft-polyacrylamide (D-PAA) polymer-nanocarrier with/without silver or gold nanoparticles (AgNPs/D-PAA and AuNPs/D-PAA, respectively) to analyze their potential to replace or supplement conventional antibiotic therapy. The toxicity of nanocomplexes against eukaryotic cells was assessed on primary dermal fibroblasts using scratch, micronucleus and proliferation assays.

View Article and Find Full Text PDF

Enediyne antibiotics are a striking family of DNA-cleaving natural products with high degrees of cytotoxicity and structural complexity. Microbial genome sequences, which have recently accumulated, point to an untapped trove of "cryptic" enediynes. Most of the cognate biosynthetic gene clusters (BGCs) are sparingly expressed under standard growth conditions, making it difficult to characterize their products.

View Article and Find Full Text PDF

Selection of allosteric dnazymes that can sense phenylalanine by expression-SELEX.

Nucleic Acids Res

June 2023

Medical School, Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Institute of Genomics, Huaqiao University, Xiamen 361021, P.R. China.

Aptamers are ligand-binding RNA or DNA molecules and have been widely examined as biosensors, diagnostic tools, and therapeutic agents. The application of aptamers as biosensors commonly requires an expression platform to produce a signal to report the aptamer-ligand binding event. Traditionally, aptamer selection and expression platform integration are two independent steps and the aptamer selection requires the immobilization of either the aptamer or the ligand.

View Article and Find Full Text PDF
Article Synopsis
  • Chemical nucleases are showing promise in chemistry, biotechnology, and medicine, primarily for their DNA cleavage capabilities through various mechanisms.
  • Many traditional DNA-cleaving agents depend on external oxidants or reductants, limiting their practical application.
  • Recent research focuses on developing self-activating chemical nucleases, particularly involving metal complexes like copper, zinc, and iron, to enhance DNA damage therapies without needing external agents.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!