Tobacco lines expressing transgenes that encode tobacco etch virus (TEV) coat protein (CP) mRNA with or without nonsense codons give rise to TEV-resistant tissues that have reduced levels of TEV CP mRNA while maintaining high levels of transgene transcriptional activity. Two phenotypes for virus resistance in the lines containing the transgene have been described: immune (no virus infection) and recovery (initial systemic symptoms followed by gradual recovery over several weeks). Here, we show that at early times in development, immune lines are susceptible to TEV infection and accumulate full-length CP mRNA. Therefore, immune lines also exhibit meiotic resetting, as is seen in the recovery lines, providing molecular evidence for a common mechanism of gene silencing and virus resistance in both cases. We also investigated the characteristics of two sets of low molecular weight RNAs that appear only in silenced tissue. One set has nearly intact 5[prime] ends, lacks poly(A) tails, and is associated with polyribosomes; the second set contains the 3[prime] end of the mRNA. Treating silenced leaf tissue with cycloheximide resulted in decreased levels of full-length mRNA and an increase in the levels of the low molecular weight RNAs, supporting a cytoplasmic decay mechanism that does not require ongoing translation. Surprisingly, mRNA from the transgene containing nonsense codons was associated with more ribosomes than expected, possibly resulting from translation from a start codon downstream of the introduced translational stop codons. We present a hypothesis for transgene/viral RNA degradation in which RNA degradation occurs in the cytoplasm while in association with polyribosomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC157007 | PMC |
http://dx.doi.org/10.1105/tpc.9.8.1411 | DOI Listing |
Autophagy
January 2025
Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
The multi-step macroautophagy/autophagy process ends with the cargo-laden autophagosome fusing with the lysosome to deliver the materials to be degraded. The metazoan-specific autophagy factor EPG5 plays a crucial role in this step by enforcing fusion specificity and preventing mistargeting. How EPG5 exerts its critical function and how its deficiency leads to diverse phenotypes of the rare multi-system disorder Vici syndrome are not fully understood.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
The WRINKLED1 (WRI1) transcription factor controls carbon flow in plants through regulating the expression of glycolysis and fatty acid biosynthesis genes. The role of Gossypium hirsutum WRINKLED1 (GhWRI1) in seed-oil accumulation still needs to be explored. Multiple sequence alignment of WRI1 proteins confirmed the presence of two conserved AP2 domains.
View Article and Find Full Text PDFProtein Expr Purif
April 2025
Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
Tobacco-etch-virus (TEV) protease is the workhorse of many laboratories in which protein expression is the linchpin of downstream experiments. TEV protease is remarkable in its sequence specificity as the cleavage sequence rarely appears in higher organisms and its ability to cleave fusion tag proteins from proteins of interest. Herein we report work done on large-scale production of TEV protease using different promotors, media, fusion tags, and expression platforms.
View Article and Find Full Text PDFViral nanoparticles (VNPs) are self-assembled nanometric complexes whose size and shape are similar to those of the virus from which they are derived. VNPs are arousing great attention due to potential biotechnological applications in fields like nanomedicine and nanotechnology because they allow the presentation of polypeptides of choice linked to the virus structural proteins. Starting from tobacco etch virus (TEV), a plant plus-strand RNA virus that belongs to the genus (family ), here we describe the development of recombinant hybrid VNPs in plants able of exposing simultaneously different proteins on their surface.
View Article and Find Full Text PDFNew Phytol
February 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!