Pain is processed in multiple cortical and subcortical brain areas. Subcortical structures are substantially involved in different processes that are closely linked to pain processing, e.g. motor preparation, autonomic responses, affective components and learning. However, it is unclear to which extent nociceptive information is relayed to and processed in subcortical structures. We used single-trial functional magnetic resonance imaging (fMRI) to identify subcortical regions displaying hemodynamic responses to painful stimulation. Thulium-YAG (yttrium-aluminum-granate) laser evoked pain stimuli, which have no concomitant tactile component, were applied to either hand of healthy volunteers in a randomized order. This procedure allowed identification of areas displaying differential fMRI responses to right- and left-sided stimuli. Hippocampal complex, amygdala, red nucleus, brainstem and cerebellum were activated in response to painful stimuli. Structures related to the affective processing of pain showed bilateral activation, whereas structures involved in the generation of withdrawal behavior, namely red nucleus, putamen and cerebellum displayed differential (i.e. asymmetric) responses according to the side of stimulation. This suggests that spatial information about the nociceptive stimulus is made available in these structures for the guidance of defensive and withdrawal behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0304-3959(02)00157-4 | DOI Listing |
Hum Brain Mapp
January 2025
Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany.
The present study investigated the neuromodulatory substrates of salience processing and its impact on memory encoding and behaviour, with a specific focus on two distinct types of salience: reward and contextual unexpectedness. 46 Participants performed a novel task paradigm modulating these two aspects independently and allowing for investigating their distinct and interactive effects on memory encoding while undergoing high-resolution fMRI. By using advanced image processing techniques tailored to examine midbrain and brainstem nuclei with high precision, our study additionally aimed to elucidate differential activation patterns in subcortical nuclei in response to reward-associated and contextually unexpected stimuli, including distinct pathways involving in particular dopaminergic modulation.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany; Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany. Electronic address:
Background: The thalamus is a complex subcortical brain structure that plays a role in various cognitive functions. Few studies have focused on thalamic nuclei-specific alterations and potential neurohormonal involvement in eating disorders including anorexia nervosa (AN).
Methods: We employed a FreeSurfer segmentation tool to compare thalamic nuclei volumes cross-sectionally between females with AN (n = 131, 12-29 years) and age-matched healthy females (HC, n = 131).
Hum Brain Mapp
January 2025
Amsterdam UMC, Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam, the Netherlands.
Accurately predicting individual antidepressant treatment response could expedite the lengthy trial-and-error process of finding an effective treatment for major depressive disorder (MDD). We tested and compared machine learning-based methods that predict individual-level pharmacotherapeutic treatment response using cortical morphometry from multisite longitudinal cohorts. We conducted an international analysis of pooled data from six sites of the ENIGMA-MDD consortium (n = 262 MDD patients; age = 36.
View Article and Find Full Text PDFMagn Reson Imaging
January 2025
Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States; Department of Computer Science, Vanderbilt University, Nashville, TN, United States; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.
While typical qualitative T1-weighted magnetic resonance images reflect scanner and protocol differences, quantitative T1 mapping aims to measure T1 independent of these effects. Changes in T1 in the brain reflect structural changes in brain tissue. Magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) is an acquisition protocol that allows for efficient T1 mapping with a much lower scan time per slab compared to multi-TI inversion recovery (IR) protocols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!