Interaction between f-electronic systems in dinuclear lanthanide complexes with phthalocyanines.

J Am Chem Soc

Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan.

Published: September 2002

The first detection and characterization of the interactions between the f-electronic systems in the dinuclear complexes of paramagnetic trivalent Tb, Dy, Ho, Er, Tm, and Yb ions with phthalocyanine ligands are presented. The molar magnetic susceptibilities, chi(m), were measured for PcLnPcLnPc* ([Ln, Ln]; Pc = dianion of phthalocyanine, Pc* = dianion of 2,3,9,10,16,17,23,24-octabutoxyphthalocyanine) and PcLnPcYPc* ([Ln, Y]) in the range from 1.8 K to room temperature. The selective synthetic method previously reported for the heterodinuclear complex [Y, Ln] was used to prepare [Ln, Ln] and [Ln, Y] with a modification on the choice of starting materials. The f-f interaction contributions to the magnetic susceptibility are evaluated as Delta(chi)(m)T = chi(m)([Ln, Ln])T - chi(m)([Ln, Y])T - chi(m)([Y, Ln])T, where T refers to temperature on the kelvin scale. The homodinuclear complexes having f(8)-f(10)-systems, namely [Tb, Tb], [Dy, Dy], and [Ho, Ho], show positive Delta(chi)(m)T values in the 1.8-50 K range, indicating the existence of ferromagnetic interaction between the f-systems. The magnitude of the Delta(chi)(m)T increases in the descending order of the number of f-electrons. [Er, Er] gives negative Delta(chi)(m)T values in the 1.8-50 K range, showing the antiferromagnetic nature of the f-f interaction. [Tm, Tm] exhibits small and negative Delta(chi)(m)T values, which gradually decline in the negative direction as the temperature decreases in the range 13-50 K and sharply rise in the positive direction as the temperature falls from 10 to 1.8 K. [Yb, Yb] has extremely small Delta(chi)(m)T values, whose magnitude at 2 K is less than 1% of that of [Tb, Tb]. The ligand field parameters of the ground-state multiplets of the six [Ln, Y] complexes are determined by simultaneous fitting to both the magnetic susceptibility data and paramagnetic shifts of (1)H NMR. The theoretical analysis successfully converged by assuming that each ligand field parameter is a function of the number of f-electrons in each ion. Using these parameters as well as the previously obtained corresponding parameters for the [Y, Ln] series, the interactions between the f-systems in [Ln, Ln] are investigated. All the characteristic observations above are satisfactorily reproduced with the assumption that the magnetic dipolar term is the sole source of the f-f interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja027119nDOI Listing

Publication Analysis

Top Keywords

deltachimt values
16
[ln ln]
12
f-f interaction
12
f-electronic systems
8
systems dinuclear
8
magnetic susceptibility
8
[tb tb]
8
values 18-50
8
18-50 range
8
number f-electrons
8

Similar Publications

We establish the coordination potential of the Schiff base ligand (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate (H2L)) via the isolation of various M(II)-Ln(III) complexes (where M(II) = Ni or Zn and Ln(III) = La or Pr or Gd). Single crystals of these five complexes were isolated and their solid state structures were determined by single crystal X-ray diffraction. Structural determination revealed molecular formulae of [NiGd(HL)2(NO3)3] (1), [NiPr(HL)2(NO3)3] (2) and [Ni2La(HL)4(NO3)](NO3)2 (3), [Zn2Gd(HL)4(NO3)](NO3)2 (4), and [Zn2Pr(HL)4(NO3)](NO3)2 (5).

View Article and Find Full Text PDF

A series of heterodinuclear Cu(II)Ln(III) and Ni(II)Ln(III) complexes, [M(II)L(1)Ln(III)(NO(3))(3)] (M = Cu or Ni; Ln = Ce-Yb), with the hexadentate Schiff base compartmental ligand N,N'-ethylenebis(3-ethoxysalicylaldiimine) (H(2)L(1)) have been synthesized and characterized. The X-ray crystal structure determinations of 13 of these compounds reveal that they are all isostructural. All of these complexes crystallize with the same orthorhombic P2(1)2(1)2(1) space group with closely similar unit cell parameters.

View Article and Find Full Text PDF

The first detection and characterization of the interactions between the f-electronic systems in the dinuclear complexes of paramagnetic trivalent Tb, Dy, Ho, Er, Tm, and Yb ions with phthalocyanine ligands are presented. The molar magnetic susceptibilities, chi(m), were measured for PcLnPcLnPc* ([Ln, Ln]; Pc = dianion of phthalocyanine, Pc* = dianion of 2,3,9,10,16,17,23,24-octabutoxyphthalocyanine) and PcLnPcYPc* ([Ln, Y]) in the range from 1.8 K to room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!