Pincer complexes of the type ((R)PCP)IrH(2), where ((R)PCP)Ir is [eta(3)-2,6-(R(2)PCH(2))(2)C(6)H(3)]Ir, are the most effective catalysts reported to date for the "acceptorless" dehydrogenation of alkanes to yield alkenes and free H(2). We calculate (DFT/B3LYP) that associative (A) reactions of ((Me)PCP)IrH(2) with model linear (propane, n-PrH) and cyclic (cyclohexane, CyH) alkanes may proceed via classical Ir(V) and nonclassical Ir(III)(eta(2)-H(2)) intermediates. A dissociative (D) pathway proceeds via initial loss of H(2), followed by C-H addition to ((Me)PCP)Ir. Although a slightly higher energy barrier (DeltaE(+ +)) is computed for the D pathway, the calculated free-energy barrier (DeltaG(+ +)) for the D pathway is significantly lower than that of the A pathway. Under standard thermodynamic conditions (STP), C-H addition via the D pathway has DeltaG(o)(+ +) = 36.3 kcal/mol for CyH (35.1 kcal/mol for n-PrH). However, acceptorless dehydrogenation of alkanes is thermodynamically impossible at STP. At conditions under which acceptorless dehydrogenation is thermodynamically possible (for example, T = 150 degrees C and P(H)2 = 1.0 x 10(-7) atm), DeltaG(+ +) for C-H addition to ((Me)PCP)Ir (plus a molecule of free H(2)) is very low (17.5 kcal/mol for CyH, 16.7 kcal/mol for n-PrH). Under these conditions, the rate-determining step for the D pathway is the loss of H(2) from ((Me)PCP)IrH(2) with DeltaG(D)(+ +) approximately DeltaH(D)(+ +) = 27.2 kcal/mol. For CyH, the calculated DeltaG(o)(+ +) for C-H addition to ((Me)PCP)IrH(2) on the A pathway is 35.2 kcal/mol (32.7 kcal/mol for n-PrH). At catalytic conditions, the calculated free energies of C-H addition are 31.3 and 33.7 kcal/mol for CyH and n-PrH addition, respectively. Elimination of H(2) from the resulting "seven-coordinate" Ir-species must proceed with an activation enthalpy at least as large as the enthalpy change of the elimination step itself (DeltaH approximately 11-13 kcal/mol), and with a small entropy of activation. The free energy of activation for H(2) elimination (DeltaG(A)(+ +)) is hence found to be greater than ca. 36 kcal/mol for both CyH and n-PrH under catalytic conditions. The overall free-energy barrier of the A pathway is calculated to be higher than that of the D pathway by ca. 9 kcal/mol. Reversible C-H(D) addition to ((R)PCP)IrH(2) is predicted to lead to H/D exchange, because the barriers for hydride scrambling are extremely low in the "seven-coordinate" polyhydrides. In agreement with calculation, H/D exchange is observed experimentally for several deuteriohydrocarbons with the following order of rates: C(6)D(6) > mesitylene-d(12) > n-decane-d(22) >> cyclohexane-d(12). Because H/D exchange in cyclohexane-d(12) solution is not observed even after 1 week at 180 degrees C, we estimate that the experimental barrier to cyclohexane C-D addition is greater than 36.4 kcal/mol. This value is considerably greater than the experimental barrier for the full catalytic dehydrogenation cycle for cycloalkanes (ca. 31 kcal/mol). Thus, the experimental evidence, in agreement with calculation, strongly indicates that the A pathway is not kinetically viable as a segment of the "acceptorless" dehydrogenation cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja012460dDOI Listing

Publication Analysis

Top Keywords

c-h addition
20
kcal/mol cyh
20
kcal/mol
13
acceptorless dehydrogenation
12
dehydrogenation alkanes
12
kcal/mol n-prh
12
h/d exchange
12
pathway
10
"acceptorless" dehydrogenation
8
addition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!