A large fraction of the presently mass-manufactured (> 10(8) units/year) electrochemical biosensors, used mostly by diabetic people to monitor their blood glucose levels, have screen-printed carbon working electrodes. An earlier study (Campbell, C. N., et al. Anal. Chem. 2002, 74, 158-162) showed that nucleic acids can be assayed at 1 nM concentrations by a sandwich-type amperometric method. The assay was performed with vitreous carbon working electrodes on which an electron-conducting polycationic redox polymer and avidin were coelectrodeposited. Because the rate of the electrodeposition increases with the surface density of the polycationic redox polymer, its practicality depends on pretreatment of the surface, which adds anionic functions. (Gao, Z., et al. Angew. Chem. Int. Ed. 2002, 41, 810-813). Here it is shown that the required conducting redox polymer films can be electrodeposited on potentially mass manufacturable electrodes made by screen-printing hydrophilic carbon inks on polyester sheets. The modified electrodes are made in two steps. First a polycationic electron-conducting redox polymer is cross-linked and electrodeposited by applying a negative potential. Next, an amine-terminated 20-base single-stranded oligonucleotide is electrodeposited by ligand-exchange. Both steps involve exchange of a labile inner sphere chloride ligand of the polymer-bound osmium-complex: Cross-linking and electrodeposition of the redox polymer result when inner-sphere chloride anions of the osmium complexes are exchanged by imidazole functions of neighboring chains. Incorporation of the oligonucleotide in the redox polymer results in the formation of a coordinative bond between the terminal amine (attached through a spacer to the oligonucleotide) and the osmium complex. In testing for the presence of a 38-base oligonucleotide, the analyte, in a 15- or 25-microL droplet of hybridization solution, is hybridized with and captured by the 20-base electrode-bound sequence; then it is hybridized with an 18-base horseradish peroxidase labeled sequence. When the HRP label electrically contacts the redox polymer, the film becomes an electrocatalyst for the reduction of H2O2 to water at 0.10 V (Ag/AgCl). Flow of the H2O2-reduction current indicates the presence of the assayed sequence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac025541g | DOI Listing |
Polymers (Basel)
January 2025
Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Lenin Ave. 30, 634050 Tomsk, Russia.
Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA.
Cadmium (Cd) is a pervasive heavy metal pollutant released into the environment through industrial activities such as mining, smelting, and agricultural runoff. This study aimed to investigate the molecular and metabolic impacts of Cd exposure on the silk glands of , a species renowned for producing silk with exceptional mechanical properties. Cd accumulation in spider bodies and silk glands was significantly higher in the low- and high-Cd groups compared to controls, with a dose- and time-dependent increase.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy.
Cannabinoids include both endogenous endocannabinoids and exogenous phytocannabinoids, such as cannabidiol (CBD), and have potential as therapeutic agents in cancer treatment due to their selective anticancer activities. CBD exhibits both antioxidant and pro-oxidant effects depending on its concentration and cell types. These properties allow CBD to influence oxidative stress responses and potentially enhance the efficacy of antitumor therapies.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.
A highly sensitive and selective electrochemical biosensor was developed for the detection of kanamycin using a core-hollow-shell structured peroxidase-mimic nanozyme, CHS-Fe₃O₄@@ZIF-8. The synthesized CHS-FeO@@ZIF-8 was characterized with scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was found that the CHS-FeO@@ZIF-8 exhibits excellent peroxidase-like activity due to its ultra-thin hollow layer.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
The functional properties of tetraaryl compounds, M(aryl) (M = transition metal or group 14 element), are dictated not only by their common tetrahedral geometry but also by their central atom. The identity of this atom may serve to modulate the reactivity, electrochemical, magnetic, and optical behavior of the molecular species, or of extended materials built from appropriate tetraaryl building blocks, but this has not yet been systematically evaluated. Toward this goal, here we probe the influence of Os(IV), C, and Si central atoms on the spectroelectrochemical properties of a series of redox-active tetra(ferrocenylaryl) complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!