CB(1) cannabinoid receptors mediate profound hypothermia when cannabinoid agonists are administered to rats. Glutamate, the principal excitatory neurotransmitter in the central nervous system (CNS), is thought to tonically increase body temperature by activating N-methyl-D-aspartate (NMDA) receptors. Because NMDA antagonists block cannabinoid-induced antinociception and catalepsy, intimate glutamatergic-cannabinoid interactions may exist in the CNS. The present study investigated the effect of two NMDA antagonists on the hypothermic response to WIN 55212-2 [4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1-i,j]quinolin-6-one], a selective cannabinoid agonist, in rats. WIN 55212-2 (1-10 mg/kg i.m.) produced dose-dependent hypothermia that peaked 60 to 180 min postinjection. Dextromethorphan (5-75 mg/kg i.m.), a noncompetitive NMDA antagonist, or LY 235959 [(-)-6-[phosphonomethyl-1,2,3,4,4a,5,6,7,8,8a-decahydro-isoquinoline-2-carboxylate]](1-4 mg/kg i.m.), a competitive and highly selective NMDA antagonist, evoked hypothermia in a dose-sensitive manner, suggesting that endogenous glutamate exerts a hyperthermic tone on body temperature. A dose of dextromethorphan (10 mg/kg) that did not affect body temperature by itself potentiated the hypothermic response to WIN 55212-2 (1, 2.5, or 5 mg/kg). The enhancement was strongly synergistic, indicated by a 2.7-fold increase in the relative potency of WIN 55212-2. Similarly, a dose of LY 235959 (1 mg/kg) that did not affect body temperature augmented the hypothermia associated with a single dose of WIN 55212-2 (2.5 mg/kg), thus confirming that NMDA receptors mediated the synergy. We have demonstrated previously that CB(1) receptors mediate WIN 55212-2-evoked hypothermia in rats. The present data are the first evidence that NMDA antagonists exert a potentiating effect on cannabinoid-induced hypothermia. Taken together, these data suggest that interactions between NMDA and CB(1) receptors produce synergistic hypothermia.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.102.037473DOI Listing

Publication Analysis

Top Keywords

win 55212-2
24
body temperature
16
nmda antagonists
12
cannabinoid agonist
8
produce synergistic
8
hypothermia
8
synergistic hypothermia
8
receptors mediate
8
nmda
8
nmda receptors
8

Similar Publications

Local activation of CB1 receptors by synthetic and endogenous cannabinoids dampens burst firing mode of reticular thalamic nucleus neurons in rats under ketamine anesthesia.

Exp Brain Res

September 2024

Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México.

The reticular thalamic nucleus (RTN) is a thin shell that covers the dorsal thalamus and controls the overall information flow from the thalamus to the cerebral cortex through GABAergic projections that contact thalamo-cortical neurons (TC). RTN neurons receive glutamatergic afferents fibers from neurons of the sixth layer of the cerebral cortex and from TC collaterals. The firing mode of RTN neurons facilitates the generation of sleep-wake cycles; a tonic mode or desynchronized mode occurs during wake and REM sleep and a burst-firing mode or synchronized mode is associated with deep sleep.

View Article and Find Full Text PDF

Background: Atopic dermatitis (AD), psoriasis (PS), and inflammatory acne (IA) are well-known as inflammatory skin diseases. Studies of the transcriptome with altered expression levels have reported a large number of dysregulated genes and gene clusters, particularly those involved in inflammatory skin diseases.

Objective: To identify genes commonly shared in AD, PS, and IA that are potential therapeutic targets, we have identified consistently dysregulated genes and disease modules that overlap with AD, PS, and IA.

View Article and Find Full Text PDF

Mitochondrial dysfunction plays a key role in the development of neurodegenerative disorders. In contrast, the regulation of the endocannabinoid system has been shown to promote neuroprotection in different neurotoxic paradigms. The existence of an active form of the cannabinoid receptor 1 (CB1R) in mitochondrial membranes (mitCB1R), which might exert its effects through the same signaling mechanisms as the cell membrane CB1R, has been shown to regulate mitochondrial activity.

View Article and Find Full Text PDF

A Complete Endocannabinoid Signaling System Modulates Synaptic Transmission between Human Induced Pluripotent Stem Cell-Derived Neurons.

Mol Pharmacol

February 2023

Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)

The endocannabinoid system (ECS) modulates synaptic function to regulate many aspects of neurophysiology. It adapts to environmental changes and is affected by disease. Thus, the ECS presents an important target for therapeutic development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!