Arterial hyperresponsiveness to serotonin (5-hydroxytryptamine, 5-HT) is observed in experimental models and human forms of hypertension. Presently, we test the hypothesis that the 5-HT(2B) receptor is up-regulated and necessary for maintaining elevated blood pressure in a rat made hypertensive by the nitric-oxide synthase inhibitor N(omega)-nitro-L-arginine (LNNA; 0.5 g/l). After 2 weeks of treatment, thoracic aorta were removed from LNNA hypertensive (systolic blood pressure = 189 +/- 5 mm Hg) and sham normotensive rats (121 +/- 1 mm Hg), denuded, and mounted into isolated tissue baths for measurement of isometric contraction. In sham tissues, 5-HT-induced contraction was mediated by the 5-HT(2A) receptor as evidence by a parallel rightward shift in response to 5-HT by the 5-HT(2A/2C) receptor antagonist ketanserin (10 nM) and lack of shift by the 5-HT(2B) receptor antagonist 6-methyl-1,2,3,4-tetrahydro-1-[3,4-dimethoxyphenyl)methyl]-9H-pyrido[3,4-b]indole hydrochloride (LY272015) (10 nM). In contrast, LY272015 produced a 4-fold rightward shift to 5-HT in aorta from LNNA hypertensive rats, and blockade by ketanserin did not occur at low concentrations of 5-HT. Maximal contraction to the 5-HT(2B) receptor agonist 1-[5-(2-thienylmethoxy)-1H-3-indolyl]propan-2-amine hydrochloride was significantly greater in LNNA hypertensive rats (percentage of phenylephrine contraction in sham = 7 +/- 4, and in LNNA = 61 +/- 7%). 5-HT(2B) receptor protein was present in aortic homogenates from sham and LNNA rats, but the density of 5-HT(2B) receptor protein in LNNA homogenates was 300% that in sham. Importantly, the 5-HT(2B) receptor antagonist LY272015 reduced blood pressure of the LNNA hypertensive but not the sham normotensive rats. Thus, these data suggest that the up-regulated 5-HT(2B) receptor in the LNNA hypertensive rats is physiologically activated to maintain elevated blood pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.102.037390DOI Listing

Publication Analysis

Top Keywords

5-ht2b receptor
28
lnna hypertensive
20
blood pressure
16
receptor antagonist
12
hypertensive rats
12
receptor
9
lnna
9
elevated blood
8
sham normotensive
8
normotensive rats
8

Similar Publications

Background: Substance use disorders are multifaceted conditions influenced by both genetic and environmental factors. Serotonergic pathways are known to be involved in substance use disorder susceptibility, with genetic markers within serotonin receptor genes identified as potential risk factors.

Methods: To further explore this relationship, we conducted a study to investigate the association between several polymorphisms in five serotonin receptor genes (, , ) and substance use disorders (SUD) in Jordanian males by sequencing genotypes in 496 SUD patients and 496 healthy controls.

View Article and Find Full Text PDF

Rigidified nucleoside derivatives with (N)-methanocarba replacement of ribose have been repurposed as peripheral subtype-selective 5-HT serotonin receptor antagonists for heart and lung fibrosis and intestinal/vascular conditions. 4'-Cyano derivative (MRS8209; , 4.27 nM) was 47-fold (human binding, but not rat and mouse) and 724-fold (functionally) selective at 5-HTR, compared to antitarget 5-HTR, and predicted to form a stable receptor complex using docking and molecular dynamics.

View Article and Find Full Text PDF

Rationale: Mescaline is a classical psychedelic compound with a phenylethylamine structure that primarily acts on serotonin 5-HT2A/C receptors, but also binds to 5-HT1A and 5-HT2B receptors. Despite being the first psychedelic ever isolated and synthesized, the precise role of different serotonin receptor subtypes in its behavioral pharmacology is not fully understood.

Objectives: In this study, we aimed to investigate how selective antagonists of 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT1A receptors affect the behavioral changes induced by subcutaneous administration of mescaline (at doses of 10, 20, and 100 mg/kg) in rats.

View Article and Find Full Text PDF

Serotonin-2B receptor (5-HTR) expression and binding in the brain of APP/PS1 transgenic mice and in Alzheimer's disease brain tissue.

Neurosci Lett

January 2025

Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus. Electronic address:

Despite well-documented dysregulation in central serotonergic signaling in Alzheimer's disease (AD), knowledge about the potential involvement of the serotonin-2B receptor (5-HTR) subtype remains sparse. Here, we assessed the levels of 5-HTRs in brain tissue from APP/PS1 transgenic (TG) mice, AD patients, and adult microglial cells. 5-HTR mRNA was measured by RT-qPCR in ageing TG and wild-type (WT) mice, in samples from the middle frontal gyrus of female, AD and control subjects, and in microglia from the cerebral cortex of WT mice.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Serotonin (5-HT) is a biogenic monoamine that acts as a neurotransmitter in the central nervous system and as a paracrine, exocrine, or endocrine messenger in peripheral tissues. In this study, we hypothesized that inhibition of serotonin signaling using 5-HT receptor 2B (HTR2B) inhibitors could potentially impede the progression of CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!