The grapefruit flavonoid, naringenin, is hypocholesterolemic in vivo, and inhibits basal apolipoprotein B (apoB) secretion and the expression and activities of both ACAT and microsomal triglyceride transfer protein (MTP) in human hepatoma cells (HepG2). In this report, we examined the effects of naringenin on apoB kinetics in oleate-stimulated HepG2 cells and determined the contribution of microsomal lumen cholesteryl ester (CE) availability to apoB secretion. Pulse-chase studies of apoB secretion and intracellular degradation were analyzed by multicompartmental modeling. The model for apoB metabolism in HepG2 cells includes an intracellular compartment from which apoB can be either secreted or degraded by both rapid and slow pathways. In the presence of 0.1 mM oleic acid, naringenin (200 micro M) reduced the secretion of newly synthesized apoB by 52%, due to a 56% reduction in the rate constant for secretion. Intracellular degradation was significantly increased due to a selective increase in rapid degradation, while slow degradation was unaffected. Incubation with either N-acetyl-leucinyl-leucinyl-norleucinal (ALLN) or lactacystin showed that degradation via the rapid pathway was largely proteasomal. Although these changes in apoB metabolism were accompanied by significant reductions in CE synthesis and mass, subcellular fractionation experiments comparing naringenin to specific ACAT and HMG-CoA reductase inhibitors revealed that reduced accumulation of newly synthesized CE in the microsomal lumen is not consistently associated with reduced apoB secretion. However, naringenin, unlike the ACAT and HMG-CoA reductase inhibitors, significantly reduced lumenal TG accumulation. We conclude that naringenin inhibits apoB secretion in oleate-stimulated HepG2 cells and selectively increases intracellular degradation via a largely proteasomal, rapid kinetic pathway. Although naringenin inhibits ACAT, CE availability in the endoplasmic reticulum (ER) lumen does not appear to regulate apoB secretion in HepG2 cells. Rather, inhibition of TG accumulation in the ER lumen via inhibition of MTP is the primary mechanism blocking apoB secretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1194/jlr.m200115-jlr200 | DOI Listing |
Neuro Endocrinol Lett
December 2024
Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
Background: Major depression is classified into distinct subtypes: simple (SDMD) and major dysmood disorder (MDMD). MDMD patients exhibit elevated atherogenicity and decreased reverse cholesterol transport (RCT). However, comprehensive data regarding lipid metabolism is absent in first episode (FE)-SDMD.
View Article and Find Full Text PDFJ Gastrointestin Liver Dis
December 2024
Department of Gastroenterology, Gulhane School of Medicine, Ankara, Turkey.
Background And Aims: Insulin resistance is considered the most important key mechanism in the development of nonalcoholic fatty liver disease (NAFLD). Some studies have reported that hyperinsulinemia decreases the hepatic secretion of apolipoprotein (Apo) B. Chronic hyperinsulinemia in NAFLD may be responsible for the accumulation of triglycerides in hepatocytes.
View Article and Find Full Text PDFSci Rep
December 2024
Postgraduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, 35400-000, Brazil.
Atherosclerotic vascular changes can begin during childhood, providing risk for cardiovascular disease (CVD) in adulthood. Identifiable risk factors such as dyslipidemia accelerate this process for some children. The apolipoprotein B (APOB) gene could help explain the inter-individual variability in lipid levels among young individuals and identify groups that require greater attention to prevent CVD.
View Article and Find Full Text PDFLipids Health Dis
December 2024
Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China.
Background: Familial hypercholesterolemia (FH) is an inherited disorder mainly marked by increased low-density lipoprotein cholesterol (LDL-C) concentrations and a heightened risk of early-onset arteriosclerotic cardiovascular disease (ASCVD). This study seeks to characterize the genetic spectrum and genotype‒phenotype correlations of FH in Chinese pediatric individuals.
Methods: Data were gathered from individuals diagnosed with FH either clinically or genetically at multiple hospitals across mainland China from January 2016 to June 2024.
Mar Drugs
December 2024
Centre for Functional Ecology: Science for People & Planet, Marine Resources, Conservation and Technology-Marine Algae Lab, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
Metabolic Syndrome (MetS) is a complex, multifactorial condition characterized by risk factors such as abdominal obesity, insulin resistance, dyslipidemia and hypertension, which significantly contribute to the development of cardiovascular disease (CVD), the leading cause of death worldwide. Early identification and effective monitoring of MetS is crucial for preventing serious cardiovascular complications. This article provides a comprehensive overview of various biomarkers associated with MetS, including lipid profile markers (triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio and apolipoprotein B/apolipoprotein A1 (ApoB/ApoA1) ratio), inflammatory markers (interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), plasminogen activator inhibitor type 1 (PAI-1), C-reactive protein (CRP), leptin/adiponectin ratio, omentin and fetuin-A/adiponectin ratio), oxidative stress markers (lipid peroxides, protein and nucleic acid oxidation, gamma-glutamyl transferase (GGT), uric acid) and microRNAs (miRNAs) such as miR-15a-5p, miR5-17-5p and miR-24-3p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!