Background And Aims: Sigma ligands display antisecretory activity against various secretagogues, suggesting antidiarrhoeal properties. In this study, we evaluated: (i) the antidiarrhoeal effect of JO 2871, a high affinity sigma ligand, in three models of toxigenic diarrhoea in mice; and (ii) the site and mechanism of action of this compound.
Methods: Faeces were collected after toxin or vehicle administration in male DBA2 or NMRI mice. Diarrhoea was determined by cumulative stool weight (mg) over a 120 minute period. Diarrhoea was induced by intravenous administration of Salmonella enteriditis lipopolysaccharide (LPS), or oral administration of Escherichia coli heat stable (E coli-sta) or Clostridium difficile toxins. Two sigma ligands, igmesine and JO 2871, were administered either orally or intravenously, 60 and 30 minutes before the toxins, respectively. JO 2871 was also given orally 30 minutes after E coli-sta. In addition, JO 2871 was administered intracerebroventricularly five minutes before LPS and E coli-sta. BMY 14802 (1000 microg/kg orally), a sigma receptor antagonist, or cyclosomatostatin (CSS 1 microg/kg intravenously), a somatostatin antagonist, were given five minutes prior to JO 2871 in LPS, E coli-sta, and C difficile toxin treated mice. Gastric emptying and intestinal transit were evaluated after oral JO 2871 and BMY 14802 and intravenous CSS.
Results: Stool weight measured 120 minutes after administration of the toxins was significantly increased. Oral JO 2871 and igmesine dose dependently inhibited toxigenic diarrhoea in all models. ED(50) values obtained using JO 2871 (1-20 microg/kg) were more than 40 times lower than those obtained with igmesine. Oral JO 2871 given after E coli-sta also inhibited diarrhoea in a dose dependent manner (ED(50) 50 microg/kg). Both sigma ligands were active by the intravenous route on LPS and E coli-sta induced stool weight increases. JO 2871 administered intracerebroventricularly failed to block this effect at any dose tested. Both BMY 14802 and CSS reversed the antidiarrhoeal effect of oral JO 2871. JO 2871, BMY 14802, and CSS did not affect transit parameters.
Conclusions: JO 2871 exerts a potent oral antidiarrhoeal effect, acting peripherally through sigma sites and somatostatin release.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1773374 | PMC |
http://dx.doi.org/10.1136/gut.51.4.522 | DOI Listing |
Asian Pac J Cancer Prev
September 2019
Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, kermanshah, Iran.
Objective: Interaction of methamphetamine and sigma (σ) receptors lead to up-regulation and activation of these receptors. The σ receptors induced apoptosis in some parts of the brain by increasing calcium, dopamine, ROS, mitochondrial pores and caspase activity. Ibudilast is a phosphodiesterase inhibitor and anti-inflammatory drug, which can decrease the inflammatory cytokines.
View Article and Find Full Text PDFPsychopharmacology (Berl)
June 2013
Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA.
Rationale: L-DOPA continues to be the primary treatment for patients with Parkinson's disease; however, the benefits of long-term treatment are often accompanied by debilitating side effects known as dyskinesias. In recent years, several 5-HT1A receptor agonists have been found to reduce dyskinesia in clinical and experimental models of PD. The purported sigma-1 antagonist, BMY-14802 has been previously demonstrated to reduce L-DOPA induced dyskinesia in a 5-HT1A receptor dependent manner.
View Article and Find Full Text PDFBrain Res
October 2012
Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan.
Straub tail reaction (STR) was observed in male ddY mice after simultaneous administration with BMY 14802 (a non-specific σ receptor antagonist) and methamphetamine (METH). The intensity and duration of STR depended on the dose of BMY 14802. The tail reaction was inhibited completely by (+)-SKF 10,047 (a putative σ(1) receptor agonist) and partially by PB 28 (a putative σ(2) receptor agonist).
View Article and Find Full Text PDFJ Pharm Biomed Anal
July 2011
Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Hittorfstraße 58-62, D-48149 Münster, Germany.
A selective competitive binding assay for the determination of the affinity of compounds to the human σ(2) receptor using 96-well multiplates and a solid state scintillator was developed. In the assay system, [(3)H]ditolylguanidine (DTG) was used as radioligand and membrane homogenates from human RT-4 cells physiologically expressing σ(2) receptors served as receptor material. In order to block the interaction of the unselective radioligand [(3)H]DTG with σ(1) receptors, all experiments were performed in the presence of the σ(1) selective ligand (+)-pentazocine.
View Article and Find Full Text PDFPsychopharmacology (Berl)
July 2009
Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA.
Rationale: Levodopa (L-DOPA), the gold standard treatment for Parkinson's disease (PD), eventually causes L-DOPA-induced dyskinesia (LID) in up to 80% of patients. In the 6-hydroxydopamine (6-OHDA) rat model of PD, L-DOPA induces a similar phenomenon, which has been termed abnormal involuntary movement (AIM). We previously demonstrated that BMY-14802 suppresses AIM expression in this model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!