A reevaluation of the validity of unrestrained plethysmography in mice.

J Appl Physiol (1985)

Vermont Lung Center, University of Vermont, Burlington, Vermont 05405, USA.

Published: October 2002

Presently, unrestrained plethysmography is widely used to assess bronchial responsiveness in mice. An empirical quantity known as enhanced pause is derived from the plethysmographic box pressure [P(b)(t), where t is time] and assumed to be an index of bronchoconstriction. We show that P(b)(t) is determined largely by gas conditioning when normal mice breathe spontaneously inside a closed chamber in which the air is at ambient conditions. When the air in the chamber is heated and humidified to body conditions, the changes in P(b)(t) are reduced by about two-thirds. The remaining changes are thus due to gas compression and expansion within the lung and are amplified when the animals breathe through increased resistances. We show that the time integral of P(b)(t) over inspiration is accurately predicted by a term containing airway resistance, functional residual capacity, and tidal volume. We conclude that unrestrained plethysmography can be used to accurately characterize changes in airway resistance only if functional residual capacity and tidal volume are measured independently and the chamber gas is preconditioned to body temperature and humidity.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00080.2002DOI Listing

Publication Analysis

Top Keywords

unrestrained plethysmography
12
airway resistance
8
resistance functional
8
functional residual
8
residual capacity
8
capacity tidal
8
tidal volume
8
reevaluation validity
4
validity unrestrained
4
plethysmography mice
4

Similar Publications

Increasing evidence indicates an association between microbiome composition and respiratory homeostasis and disease, particularly disordered breathing, such as obstructive sleep apnea. Previous work showing respiratory disruption is limited by the methodology employed to disrupt, eliminate, or remove the microbiome by antibiotic depletion. Our work utilized germ-free mice born without a microbiome and described respiratory alterations.

View Article and Find Full Text PDF

Pulmonary function examinations are critical to assess respiratory disease severity in patients. In preclinical rodent models of viral respiratory infections, however, disease is frequently evaluated based on virological, pathological and/or surrogate clinical parameters, which are not directly associated with lung function. To bridge the gap between preclinical and clinical readouts, we aimed to apply unrestrained whole-body plethysmography (WBP) measurements in a SARS-CoV-2 Syrian hamster challenge model.

View Article and Find Full Text PDF

The present study investigated the effects of a single 10-minute exposure to e-cigarette vapor on ventilation in adult male Long-Evans rats. Ventilation was recorded using awake, unrestrained whole-body plethysmography. Baseline recordings were taken the day before full-body exposure to either room air (n = 9; air control group) or e-cigarette vapor (n = 9; treatment group).

View Article and Find Full Text PDF

COVID-19 pneumonia causes acute lung injury and acute respiratory distress syndrome (ALI/ARDS) characterized by early pulmonary endothelial and epithelial injuries with altered pulmonary diffusing capacity and obstructive or restrictive physiology. Growth hormone-releasing hormone receptor (GHRH-R) is expressed in the lung and heart. GHRH-R antagonist, MIA-602, has been reported to modulate immune responses to bleomycin lung injury and inflammation in granulomatous sarcoidosis.

View Article and Find Full Text PDF

Botulinum neurotoxin (BoNT) is a potent protein toxin that causes muscle paralysis and death by asphyxiation. Treatments for symptomatic botulism are intubation and supportive care until respiratory function recovers. Aminopyridines have recently emerged as potential treatments for botulism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!