The occurrence of extended tight junction (TJ) structures, including zonulae occludentes (ZO), and the spatial arrangement of TJ proteins in stratified mammalian epithelia has long been controversially discussed. Therefore, we have systematically examined the localization of TJ proteins in diverse stratified epithelial tissues (e.g., epidermis, heel pad, snout, gingiva, tongue, esophagus, exocervix, vagina, urothelium, cornea) of various species (human, bovine, rodents) as well as in human cell culture lines derived from stratified epithelia, by electron microscopy as well as by immunocytochemistry at both the light and the electron microscopic level, using antibodies to TJ proteins such as occludin, claudins 1 and 4, protein ZO-1, cingulin and symplekin. We have found an unexpected diversity of TJ-related structures of which only those showing colocalization with the most restricted transmembrane TJ marker protein, occludin, are presented here. While in epidermis and urothelium occludin is restricted to the uppermost living cell layer, TJ-related junctions are abundant in the upper third or even in the majority of the suprabasal cell layers in other stratified epithelia. Interfollicular epidermis contains, in the stratum granulosum, extended, probably continuous ZO-like structures which can also be traced at least through the Henle cell layer of hair follicles. Similar apical ZO-like structures have been seen in the upper living cell layers of all other stratified epithelia and cell cultures examined, but in most of them we have noticed, in addition, junctional regions showing relatively broad, ribbon-like membrane contacts which in cross-section often appear pentalaminar, with an electron-dense middle lamella ("lamellated TJs", coniunctiones laminosae). In suprabasal layers of several stratified epithelia we have further observed TJ protein-containing junctions of variable sizes which are characterized by a 10-30-nm dense lamina interposed between the two membranes ("sandwich junctions"; iuncturae structae). Moreover, we have often observed variously sized regions in which the intermembrane distance is rather regularly bridged by short rod-like elements ("cross-bridged cell walls"; parietes transtillati), often in close vicinity of TJ-related structures or desmosomes. The significance of these structures and their possible biological importance are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1078/0171-9335-00270 | DOI Listing |
Microbiol Mol Biol Rev
January 2025
Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA.
SUMMARYHuman papillomaviruses (HPVs) are small DNA viruses that are responsible for significant disease burdens worldwide, including cancers of the cervix, anogenital tract, and oropharynx. HPVs infect stratified epithelia at a variety of body locations and link their productive life cycles to the differentiation of the host cell. These viruses have evolved sophisticated mechanisms to exploit cellular pathways, such as DNA damage repair (DDR), to regulate their life cycles.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
Desmosomes are adhesive cell contacts abundant in tissues exposed to mechanical strain, such as the stratified and simple epithelia of the epidermis and mucous membranes, as well as the myocardium. Besides their role in mechanical cell cohesion, desmosomes also modulate pathways important for tissue differentiation, wound healing and immune responses. Dysfunctional desmosomes, resulting from pathogenic variants in genes encoding desmosomal components, autoantibodies targeting desmosomal adhesion molecules or inflammation, cause the life-threatening diseases arrhythmogenic cardiomyopathy and pemphigus and contribute to the pathogenesis of inflammatory bowel diseases.
View Article and Find Full Text PDFbioRxiv
December 2024
Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
PLoS One
December 2024
Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México.
In recent years, different laboratories have provided evidence on the role of miRNAs in regulation of corneal epithelial metabolism, permeability and wound healing, as well as their alteration after surgery and in some ocular pathologies. We searched the available databases reporting miRNA expression in the human eye, looking for miRNAs highly expressed in central cornea, which could be crucial for maintenance of the epithelial phenotype. Using the rabbit RCE1(5T5) cell line as a model of corneal epithelial differentiation, we describe the participation of miR-141-3p as a possible negative regulator of the proliferative/migratory phenotype in corneal epithelial cells.
View Article and Find Full Text PDFEvodevo
October 2024
Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44, Prague, Czech Republic.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!