Acclimation of Soybean Nodules to Changes in Temperature.

Plant Physiol

Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6.

Published: September 1994

This study examines how O2 status, respiration rate, and nitrogenase activity of soybean (Glycine max) nodules acclimate to short-term (<30 min) temperature change from 20 to 15[deg]C or from 20 to 25[deg]C. Acclimation responses were compared between nodules on uninhibited plants and nodules that were severely O2 limited by exposure to Ar:O2. In uninhibited nodules the decrease in temperature caused a rapid inhibition of nitrogenase activity followed by partial recovery, whereas in Ar:O2-inhibited nodules the temperature decrease caused a minor stimulation followed by a gradual decline in nitrogenase activity. In contrast, the temperature increase caused a gradual increase in nitrogenase activity in uninhibited nodules, and an initial inhibition followed by a rapid rise in Ar:O2-inhibited nodules. In both uninhibited and Ar:O2-inhibited nodules, temperature had only minor effects on the degree to which nitrogenase activity was limited by O2 supply, but nodule permeability to O2 diffusion was greater at 25[deg]C, and less at 15[deg]C, than that measured at 20[deg]C. On the basis of these data, we propose that temperature change alters the nodule's respiratory demand and that the observed changes in nodule permeability occur to maintain control over the infected cell O2 concentration as the O2 demand increases at high temperature or decreases at low temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC159524PMC
http://dx.doi.org/10.1104/pp.106.1.263DOI Listing

Publication Analysis

Top Keywords

acclimation soybean
4
soybean nodules
4
nodules changes
4
changes temperature
4
temperature study
4
study examines
4
examines status
4
status respiration
4
respiration rate
4
rate nitrogenase
4

Similar Publications

Salt stress poses a significant challenge to plant growth and restricts agricultural development. To delve into the intricate mechanisms involved in soybean's response to salt stress and find targets to improve the salt resistance of soybean, this study integrated transcriptomic, proteomic, and metabolomic analyses to explore the regulatory networks involved in soybean salt tolerance. Transcriptomic analysis revealed significant changes in transcription factors, hormone-related groups, and calcium ion signaling.

View Article and Find Full Text PDF

Involvement of nitrate reductase in nitric oxide generation and in the induction of acclimation responses to phosphorus restriction in soybean plants.

Plant Sci

December 2024

Instituto de Fisiología Vegetal (INFIVE CCT CONICET La Plata), Universidad Nacional de La Plata (UNLP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Diagonal 113 Nº 495 (1900) La Plata, Argentina. Electronic address:

Nitrate reductase (NR) is an essential enzyme because of its role in nitrogen metabolism and in key signaling events through the generation of the reactive nitrogen species, nitric oxide (NO). In this work, we evaluated changes in endogenous NO levels during the onset of P-restriction in soybean plants (Glycine max), focusing on the possible pathways involved in its generation, namely NR and NO synthase like activity, NOS, and the subsequent role of NR during low P-acclimation. During the first 96h of P-starvation NO levels increased in the leaves.

View Article and Find Full Text PDF

OsWRKY49 on qAT5 positively regulates alkalinity tolerance at the germination stage in Oryza sativa L. ssp. japonica.

Theor Appl Genet

December 2024

Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.

Integrated genome-wide association study and linkage mapping revealed genetic basis of alkalinity tolerance during rice germination. The key gene OsWRKY49 was further verified in transgenic plants. With the widespread use of the rice direct seeding cultivation model, improving the tolerance of rice varieties to salinity-alkalinity at the germination stage has become increasingly important.

View Article and Find Full Text PDF
Article Synopsis
  • The shift from fluorescent lights to LEDs in growth chambers necessitates a review of plant biotechnology methods, particularly in soybean (Glycine max) transformation using Agrobacterium.
  • Five different LED light intensities during the co-cultivation phase were tested, revealing that higher LED intensity improves transformation efficiency, especially under the HPPD inhibitor selection.
  • The study found that different selectable markers affected transformation outcomes, highlighting the importance of specific light conditions in genetic engineering protocols for soybeans.
View Article and Find Full Text PDF

Recent changes in legislation have put hempseed meal (Cannabis sativa L.; HSM) under consideration as a potential livestock feedstuff. Digestibility of HSM has been researched in other species, however, there are little data in horses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!